Dossier para el control y la gestión del Agua de Lastre y sedimentos de los buques en Colombia
Dossier para el control y la gestión del agua de lastre y sedimentos de los buques en Colombia

CONTRALMIRANTE LEONARDO SANTAMARIÁ GAITÁN
Director General Marítimo

CONSEJO EDITORIAL

VICEALMIRANTE JAIRO JAVIER PEÑA GÓMEZ
Segundo Comandante Armada Nacional

CAPITÁN DR. NAVID JUAN MANUEL SERRAJI ESPINSA
Hidrógrafo y Oceanógrafo Físico / Director Cioh-2007-2008

CAPITÁN DE NAVID ESTEBAN URIBE ALZATE
Oceanógrafo Físico / Director Cioh-2009-2010

AUTORA

MARY LUZ CAÑÓN PÁEZ
Bióloga Marina, Máster en Gestión y Auditorias Ambientales / Investigadora Área de Protección del Medio Marino Cioh

COLABORADORES

GUSTAVO TOUS HERAZO
Químico Farmacéutico, Especialista en Administración Ambiental de Zonas Costeras / Investigador Área de Protección del Medio Marino Cioh

HUGO JAVIER LLAMAS CONTRERAS
Tecnólogo en Piscicultura / Investigador Área de Protección del Medio Marino Cioh

DIANA MARÍA QUINTANA SAAVEDRA
Microbióloga / Investigadora Área de Protección del Medio Marino Cioh

ROSSANA LÓPEZ OSORIO
Bióloga / Investigadora Área de Protección del Medio Marino Cioh

MARIÁ FERNANDA GRACIA
Bióloga Marina / Tesista Área de Protección del Medio Marino Cioh

REVISORES

CAPITÁN DE FRAGATA IVÁN FERNANDO CASTRO MERCADO
Ingeniero Geógrafo, Máster en Gestión y Auditorías Ambientales

 TENIENTE DE NAVID FABIÁN RAMÍREZ CABRALES
Máster en Relaciones Internacionales, Especialista en Derecho Marítimo y Estudios Políticos

FLAVIO DA COSTA FERNANDES
Doctor en Oceanografía Biológica

DIRECCIÓN EDITORIAL

ANGÉLICA MARÍA CASTRILLO GÁMEZ
Máster en Edición / Editora Publicaciones Dimar

COORDINACIÓN EDITORIAL

DIANA XIMENA ESPINOZA SERNA
Máster en Imaen. Publicidad e Identidad Corporativa / Divulación Científica Cioh

JUAN GUILLERMO FRANCO BALANTA
Publicista / Área Imagen Corporativa Dimar

ANDRÉS FELIPE CARVAJAL DÍAZ
Ingeniero Civil / Área de Manejo Integrado de Zonas Costeras Cioh

PAOLA GUERRERO GONZÁLEZ
Administradora Industrial / Centro de Documentación Cioh

EDITORIAL DIMAR

ARTE: JAIME ALBERTO RÍOS
IMPRESIÓN: Legis S.A.

©FOTOGRAFÍAS: Antonio Fidelis Mogollón, archivo fotográfico del Área de Protección del Medio Marino del Cioh

Citar esta obra como:

Citar capítulos:

ISBN: 978-958-99076-2-7

Ninguna parte de este libro puede ser reproducida, almacenada en sistema recuperable o transmitida en alguna forma o medio electrónico, mecánico, fotocopia, grabación u otro, sin el debido reconocimiento de la fuente y permiso escrito de los editores.
TABLA DE CONTENIDO

PRÓLOGO

INTRODUCCIÓN

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Contenido</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Biología del agua de lastre: las especies invasoras marinas (EIM)</td>
<td>17</td>
</tr>
<tr>
<td>1.2</td>
<td>El impacto de las EIM</td>
<td>18</td>
</tr>
<tr>
<td>1.2.1</td>
<td>En el medio ambiente</td>
<td>18</td>
</tr>
<tr>
<td>1.2.2</td>
<td>En la economía</td>
<td>20</td>
</tr>
<tr>
<td>1.2.3</td>
<td>En la salud pública</td>
<td>21</td>
</tr>
<tr>
<td>1.3</td>
<td>Vectores de introducción</td>
<td>22</td>
</tr>
<tr>
<td>1.3.1</td>
<td>El tráfico marítimo internacional</td>
<td>23</td>
</tr>
<tr>
<td>1.3.2</td>
<td>La demanda del transporte marítimo</td>
<td>25</td>
</tr>
<tr>
<td>1.3.3</td>
<td>La industria naviera</td>
<td>28</td>
</tr>
</tbody>
</table>

CAPÍTULO II - PROGRAMAS E INICIATIVAS INTERNACIONALES

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Contenido</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Régimen de regulación internacional de las EIM introducidas por agua de</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>lastre</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Convenio Internacional para el Control y la Gestión del Agua de Lastre y</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>los Sedimentos de los Buques (2004)</td>
<td></td>
</tr>
<tr>
<td>2.2.1</td>
<td>Introducción</td>
<td>33</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Revisión del Convenio OMI y directriceslegales</td>
<td>36</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Intercambio del agua de lastre</td>
<td>37</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Áreas para el cambio de agua de lastre</td>
<td>39</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Tardanza excesiva y desviación de ruta planeada</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2.4</td>
<td>Estándares de descarga</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2.5</td>
<td>Facilidades de recepción del agua de lastre y los sedimentos de los buques</td>
<td>42</td>
</tr>
<tr>
<td>2.2.2.6</td>
<td>Casos y eventos excepcionales</td>
<td>43</td>
</tr>
<tr>
<td>2.2.2.7</td>
<td>Aprobación de los sistemas de tratamiento del agua de lastre</td>
<td>43</td>
</tr>
<tr>
<td>2.2.2.8</td>
<td>Toma y análisis de muestras</td>
<td>45</td>
</tr>
<tr>
<td>2.2.2.9</td>
<td>Control por parte del Estado Rector del Puerto y muestreo del agua de</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>lastre</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Asociación GloBallast</td>
<td>47</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Enfoque global</td>
<td>48</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Enfoque regional</td>
<td>49</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Enfoque nacional</td>
<td>50</td>
</tr>
</tbody>
</table>

CAPÍTULO III - ESTRATEGIAS A IMPLEMENTAR PARA ENFRENTAR EL PROBLEMA

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Contenido</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Elementos vitales para el desarrollo de la estrategia</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Razones por las cuales es necesario que toda la nación se comprometa</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Obtener el apoyo de instituciones relevantes</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Institucionalizar el compromiso</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Componentes cruciales en la estrategianacional</td>
<td>57</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Construir capacidades institucionales</td>
<td>57</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Construir capacidad de investigación</td>
<td>58</td>
</tr>
</tbody>
</table>
3.5.3 Promover el intercambio de información 58
3.5.4 Desarrollar políticas económicas e instrumentos 59
3.5.5 Fortalecer marcos nacionales, regionales e internacionales 60
3.5.6 Construir conciencia pública y compromiso 60
3.5.7 Preparar planes y estrategias nacionales 61
3.5.7.1 Establecimiento de prioridades 61
3.5.7.2 Coordinación externa 62
3.5.8 Incorporar a las EIM en iniciativas de cambio global 62
3.5.9 Promover la cooperación internacional 62
3.6 Estrategia de prevención 63
3.7 Estrategia de alerta temprana 64
3.8 Erradicación, control y monitoreo 64
3.9 Evaluación y dirección 65
3.10 Recursos para la implementación 65
3.11 Estrategia nacional para la gestión del agua de lastre y los sedimentos: propuesta 65
3.11.1 Objetivo de la estrategia 65
3.11.2 Alcance 66
3.11.3 Terminología 66
3.11.4 Metas 66
3.11.5 Acciones a implementar 68
3.11.4 Resultados esperados 70

CAPÍTULO IV- PRIMEROS AVANCES, CASO COLOMBIA 73

4.1 Fase inicial proyecto Agua de Lastre 75
4.2 Levantamiento de información en puertos y evaluación de la calidad del agua de lastre 81
4.2.1 Muestreo de parámetros fisicoquímicos 82
4.2.2 Muestreo de parámetros biológicos 82
4.2.3 Muestreo de parámetros microbiológicos 82
4.2.4 Muestreo en tanques de lastre de buques 83
4.3 Resultados obtenidos 85
4.3.1 Puerto de Cartagena 85
4.3.1.1 Información base fisicoquímica, biológica y microbiológica de la bahía 87
4.3.1.2 Calidad de las aguas de lastre de algunos buques en la Bahía de Cartagena 93
4.3.1.3 Mapa preliminar de análisis de riesgo de la Bahía de Cartagena por la carga o descarga de aguas de lastre 95
4.3.2 Puerto Bolívar y Bahía Portete 96
4.3.2.1 Información base fisicoquímica, biológica y microbiológica de la Bahía Portete 96
4.3.2.2 Calidad del agua de lastre de algunos buques en Puerto Bolívar 98
4.3.3 Identificación de origen y destino del agua de lastre para algunos puertos colombianos, de acuerdo con la información suministrada en el reporte de agua de lastre del Anexo A de la Resolución A 868 (20)-OMI 103
4.4 Proyecciones 106
4.5 Recomendaciones 107

BIBLIOGRAFÍA 109

ANEXOS
<table>
<thead>
<tr>
<th>FIGURAS</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Proceso de lastrado y deslastrado en los buques (Programa GloBallast-OMI).</td>
<td>17</td>
</tr>
<tr>
<td>1.2</td>
<td>Alga Caulerpa taxifolia, especie introducida en el Mar Mediterráneo en 1996.</td>
<td>19</td>
</tr>
<tr>
<td>1.3</td>
<td>Mejillones dorados (Limnoperna fortunei) (Dunker, 1857).</td>
<td>19</td>
</tr>
<tr>
<td>1.4</td>
<td>Crustáceo Charybdis helleri, especie exótica introducida en el Caribe colombiano.</td>
<td>20</td>
</tr>
<tr>
<td>1.5</td>
<td>Mejillón cebra (Dreissena polymorpha), especie europea responsable de grandes pérdidas económicas en América.</td>
<td>21</td>
</tr>
<tr>
<td>1.7</td>
<td>Áreas de carga y descarga de agua de lastre por buques transportadores de petróleo crudo en 1996 (Modificado de: Endressen et al., 2004).</td>
<td>25</td>
</tr>
<tr>
<td>1.8</td>
<td>Densidad del tráfico marítimo y la topografía de profundidad (Gebco, 1997; Amver, 2001) que ilustra la significante porción del tráfico marítimo que ocurre en aguas someras. Comparadas éstas con las áreas de intercambio de agua de lastre reportados (Ruiz et al., 2001), se considera que gran parte del intercambio de agua de lastre no es realizado en aguas profundas del océano (Modificado de: Endressen et al., 2004).</td>
<td>26</td>
</tr>
<tr>
<td>1.9</td>
<td>Consumo mundial de carbón y precios internacionales (Fuente: Corredor et al., 2007).</td>
<td>29</td>
</tr>
<tr>
<td>2.1</td>
<td>Fases planeadas para la implementación de estándares de gestión del agua de lastre establecidos por el Convenio para la Gestión del Agua de Lastre, considerando el intercambio del agua de lastre (Regulación D-1) y estándar más estricto para la gestión del agua de lastre (Regulación D-2) (Fuente: Gollasch et al., 2007).</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Proceso de aprobación definitiva de sistemas de tratamiento de aguas de lastre y de sustancias activas o preparados a bordo de los buques (Fuente: Resolución Mepc OMI-126 (53)).</td>
<td>46</td>
</tr>
<tr>
<td>2.3</td>
<td>Estrategia implementación proyecto Asociación GloBallast (Fuente: GEF, Pnud, OMI, 2007-Proyecto Asociación GloBallast).</td>
<td>49</td>
</tr>
<tr>
<td>2.4</td>
<td>Enfoques de la estrategia Proyecto GloBallast (Fuente: GEF, Pnud, OMI, 2007-Proyecto Asociación GloBallast).</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>Procesamiento de muestras en laboratorios de la Dimar-Ciho.</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Buque de carga, Puerto Bolivar, Colombia.</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Área de estudio, Bahía de Cartagena con la localización de las estaciones monitoreadas. Donde B= Boya.</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Recolección de muestras y registros de parámetros in situ.</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Arrastre de plancton en la popa de la embarcación.</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>Variación espacio-temporal del pH en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la...</td>
<td></td>
</tr>
</tbody>
</table>
ética de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).

4.5 Variación espacio-temporal de oxígeno disuelto (mg/L) en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).

4.6 Variación espacio-temporal de la concentración de nitratos (mg/L) en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).

4.7 Variación espacio-temporal de la concentración de uréfatos (mg/L) en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).

4.8 Variación espacio-temporal de concentración de sustancias que absorben en la misma longitud de onda de la clorofila-a (mg/L) en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).

4.9 Tanques de lastre que sobrepasaron el límite admisible de ortofosfatos y amonio para aguas de uso pesquero.

4.10 Tanques de lastre que realizaron intercambio de aguas (27 %), acuerdo con las directrices OMI a, b, c, d, e y f. Parámetros fisicoquímicos de los tanques con concentraciones que garantizan la viabilidad de los organismos transferidos por el agua de lastre.

4.11 Tanques de lastre que sobrepasaron el límite admisible de *Escherichia coli* y enterococos intestinales, acuerdo estándar OMI/2004.

4.12 Mapa preliminar del análisis de riesgo en la Bahía de Cartagena que ilustra las áreas más afectadas por la descarga de sustancias contaminantes.

4.13 Área de Estudio. Puerto Bolívar y Bahía Portete con estaciones de muestreo.

4.14 Distribución espacio-temporal promedio de la concentración de nutrientes (nitratos, amonio y ortofosfatos) en Bahía Portete y Puerto Bolívar, durante 2007. Donde a) Corresponde a la variación estacional de los nutrientes y b) Distribución espacial promedio de amonio en el área de estudio (Cañón et al., 2008b).

4.15 Distribución espacio-temporal de la temperatura y la salinidad en Puerto Bolívar y Bahía Portete. Donde: a) Temperatura época seca; b) Temperatura época lluvias; c) Salinidad época seca y d) Salinidad época lluvias (Cañón et al., 2008b).

4.16 Concentración de *E.coli* en Puerto Bolívar durante el año 2007. a) Variación estacional del parámetro, donde, MBP: Muellle Puerto Bolívar; B11: boyas 11; B14: boyas 14; BAL: última baliza; NAC: Norte Área de Cuarentena; AC: Área de Cuarentena; AFO: Área de Fondeo; PIS: Punta Ishep; CJP: Centro Bahía Portete; B12: boyas 12. b) Promedios de distribución espacial (Cañón et al., 2008b).

Tanques de lastre que sobrepasaron el límite admisible de ortofosfatos, nitratos y amonio para aguas de uso pesquero y además superaron las concentraciones reportadas en Bahía Portete.

Condiciones físicoquímicas reportadas en los tanques de lastre en Puerto Bolívar.

Concentraciones de sólidos suspendidos totales (mg/L), clorofila-a (mg/m³) y turbidez (NTU), reportadas en los tanques de lastre en Puerto Bolívar.

Concentraciones de los microbios indicadores Escherichia coli (puntos rojos) y enterococos intestinales (cubiertas azules) (UCF/100 ml) reportadas en los tanques de lastre en Puerto Bolívar.

Aplicación lastreDB, desarrollada para consolidar la información del reporte aguas de lastre, suministrada al Estado Rector del Puerto (Puerto Bolívar (CP14), Santa Marta (CP4), Cartagena (CP5) y Turbo (CP8), según el Formato I de la Resolución A 868(20)).

Volúmenes de aguas de lastre descargas en Puerto Bolívar, según información reportada en el Formato I de la Resolución A 868(20).

Volúmenes de aguas de lastre descargas en Santa Marta, según información reportada en el Formato I de la Resolución A 868(20).

TABLAS

1.1 Tráfico marítimo internacional (Anave, 2007). Donde, tm = millones de tm y tm x milla = miles de millones de tm x milla.

2.1 Lista de directrices relacionadas con la implantación uniforme del convenio adoptadas desde el Mepc 53 (Fuente: Gollasch et al., 2007; Mepc (55), (57) y (58).

4.I Efectos sobre los ecosistemas y la salud humana de algunas especies de fitoplancton identificadas en la Bahía de Cartagena (Modificado de: proyecto Agua de Lastre Cioh, 2006).

4.II Técnicas y equipos de muestreo utilizados para el monitoreo de agua en los tanques de lastre de buques de tráfico internacional que arribaron al puerto de Cartagena (Fuente: Cañón et al., 2008a).

4.III Métodos implementados por los laboratorios del Cioh para el análisis de las muestras.
PRÓLOGO

Este dossier es el resultado de una de las iniciativas desarrolladas por el Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe (Cioh), de la Dirección General Marítima (Dimar), para atender una de las mayores amenazas que se ciernen sobre los océanos en el ámbito global. Específicamente, el documento dedica su atención a la introducción de especies por agua de lastre. Este documento, producto de seis años de intensa y dedicada investigación científica, se enmarca en la línea de investigación de Protección del Medio Ambiente Marino. Esta línea ha permitido contribuir al esfuerzo internacional que lidera la Organización Marítima Internacional (OMI) para reducir y mitigar la introducción de organismos invasores y agentes patógenos por agua de lastre y sedimentos de los buques.

En tal sentido, esta publicación reúne una interesante guía institucional para enfrentar los retos que impone la bioinvasión marina por agua de lastre de los buques. Para ello, se han dedicado cuatro capítulos de obligatoria consulta y estudio. En ellos el lector podrá comprender la magnitud del fenómeno, así como los severos impactos ecológicos y económicos que generan estos invasores a los ecosistemas marinos. Asimismo, el documento es oportuno en brindar una óptica general sobre cómo el comercio marítimo internacional y el consecuente incremento del tráfico marítimo inciden en esta problemática ambiental. De igual forma, destaca la amplia participación y responsabilidad de la industria naviera en la protección del medio ambiente marino. Conforme a ello, el presente dossier indica los primeros esfuerzos e iniciativas internacionales que han permitido construir el régimen internacional para la gestión y control del agua de lastre y sedimentos de los buques. Al respecto, contempla y prevé una revisión exhaustiva de las directrices y preceptos adoptados por OMI para reducir la introducción de especies exóticas ocasionadas por este vector de introducción. Igualmente, ilustra sobre la fase preparatoria del nuevo proyecto conocido como Asociación GloBallast (GloBallast Partnership) con miras a la realización a escala global del proyecto ‘Construyendo Asociaciones para Asistir a los Países en Vías de Desarrollo a Reducir la Transferencia de Organismos Acuáticos Dañinos en Aguas de Lastre de los Buques’. Este último considerado el núcleo vital del programa para contribuir regionalmente a la consolidación de reformas legales y políticas para alcanzar los objetivos del Convenio Internacional.
Bajo ese marco, el dossier señala la primera propuesta de Estrategia Nacional para el Control y Gestión del Agua de Lastre y Sedimentos de los Buques como un primer esfuerzo institucional que contribuye a la creación de las condiciones mínimas que facilitan una eficaz implementación de los acuerdos regionales y fortalecer el liderazgo del estado colombiano en la consolidación de estos propósitos internacionales para enfrentar la creciente bioinvasión marina.

Adicionalmente, se muestran los primeros resultados generados desde el año 2002, obtenidos por el Cioh, en la caracterización de los puertos del Caribe colombiano. Estas primeras acciones, de invaluable valor científico y humano, han permitido el levantamiento de información base útil para los propósitos institucionales en la gestión y control del agua de lastre de los buques.

Finalmente, con esta publicación a voluntad de Dimar-Cioh es consolidar los esfuerzos realizados por su equipo de trabajo técnico y profesional, difundiendo los resultados de su investigación y respondiendo a la misión institucional encomendada por el Alto Mando Naval en la protección y guarda de los mares colombianos.

Contralmirante Leonardo Santamaría Gaitán
Director General Marítimo
INTRODUCCION

Este dossier inicia con el estudio del significado lastre. Para ello se ha considerado revisar de manera muy general el sentido y aplicación del término lastre\(^1\). Dicho vocablo puede ser entendido como cualquier material para pesar o balancear un objeto. Aplicado éste al transporte marítimo, hace referencia a cualquier elemento sólido o líquido que sirva como material de lastre. Sin embargo, los buques casi exclusivamente emplean el agua como el elemento que provee balance y estabilidad para la seguridad de la navegación. Ahora bien, ¿cómo el agua de lastre permite obtener balance y estabilidad en el buque? Al respecto, se sostiene que este mecanismo\(^2\) es aplicado cuando la capacidad de carga del buque no ha sido empleada al máximo o carece de esta última. Dicha operación, referida en el sector naviero como *ballasting*, consiste en el bombeo de agua tomada directamente del puerto de origen para ser almacenada en los tanques de lastre y, finalmente, descargada en el puerto de destino, con el fin de embarcar mercancías o carga, según el tipo de buque. Este procedimiento permite a la motonave compensar su capacidad de carga.

De este modo se reafirma que el lastre es un elemento primordial para la navegación y en efecto así lo ha sido. El lastre ha estado presente desde los tiempos en que los fenicios empezaron a comerciar por vía marítima y sus mejoras han estado ligadas a los avances en la navegación. En efecto, el inicio de la Era Industrial significó notables avances en su aplicación, pero a la vez el lastre se convertiría en uno de los mayores vectores de transferencia de organismos por dos razones fundamentales: la primera, su transformación de sólido a lastre líquido. Ciertamente, el agua además de servir como lastre contiene organismos y patógenos\(^3\), originalmente presentes en el medio acuático del cual han sido extraídos. Al igual que otros organismos y patógenos que han sido introducidos en los tanques y depositados en una capa de sedimento que progresivamente se acumula con cada operación de carga y descarga de agua de lastre (Ruiz y Carlton, 2003; Hayes y Sliwa, 2003 y posteriores).

1 Piedra, arena, agua u otra cosa de peso que se pone es el fondo de la embarcación, a fin de que ésta entre en el agua hasta donde convenga.
2 Hace referencia a la toma de agua y su posterior depósito o alojamiento en los tanques dispuestos para obtener el lastre adecuado.
3 Se refiere a lo que comúnmente se conoce como lastreando.
4 Estos incluyen bacterias y otros microbios, micro-algas, pequeños invertebrados y sus huevos, esporas, semillas y larvas de distintas plantas acuáticas y especies animales.
Lo anterior ha conducido a Dimar-Cioh a desarrollar investigaciones que centren su atención en los organismos introducidos bajo este esquema rutinario de la navegación. Indudablemente, los primeros reportes confirman que estos organismos invasores pueden reproducirse, vivir más de un ciclo de vida y establecerse en los nuevos ambientes marinos en los cuales han sido vertidos (Firestone y Corbett, 2005). Conforme a ello se ratifica que el segundo factor de introducción de especies se origina en la globalización del comercio y el fenómeno concomitante al aumento del número, tamaño y velocidad de los buques empleados en el comercio marítimo internacional. Ciertamente, el transporte naviero es vital para la economía y mueve cerca del 80% de las mercancías en el ámbito global. No obstante, durante el desarrollo de esta actividad se transfieren aproximadamente de 3 a 5 billones de toneladas de agua de lastre en el ámbito internacional cada año (Raaymakers, 2002). Un volumen similar puede ser también transferido domésticamente al interior de los países y regiones anualmente, generando la suma total de movimientos de agua de lastre estimado en 10 billones de toneladas por año (Bright, 1999; Rigby y Taylor, 2001).

En ese sentido es claro que la capacidad de almacenamiento de los tanques para alojar agua de lastre es altamente significativa, lo cual le ha significado que sea considerado el principal vector de contaminación de ambientes marinos en cuanto al vertimiento de aguas de lastre se refiere. En consecuencia se demuestra que los volúmenes de agua de lastre estimados anualmente, según la carga y el tipo de buque, así como las principales rutas de tráfico marítimo internacional, generan un impacto significativo en el medio ambiente marino colombiano.

Frente a este panorama Dimar-Cioh ha tomado nota de las directrices y resoluciones, y ha estudiado la normativa contemplada en el Convenio Internacional para el Control y la Gestión del Agua de Lastre y Sedimentos de los Buques de 2004, adoptado en el seno la OMI. Producto de ello ha sido este dossier documental que, conforme al desarrollo e implementación de la fase preparatoria del nuevo proyecto “Construyendo Asociaciones para Asistir a los Países en Vías de Desarrollo a Reducir la Transferencia de Organismos Acuáticos Dañinos en Aguas de Lastre de los Buques” (Building Partnerships to Assist Developing Countries to Reduce the Transfer of Harmful Aquatic Organisms in Ships’ Ballast Water), incluye algunos lineamientos para formular la primera Estrategia Nacional para el Control y Gestión del Agua de Lastre y Sedimentos de los Buques. Este propósito permite dibujar una cartografía de cómo lograr alcanzar las reformas políticas e institucionales que señalen los lineamientos al Estado colombiano para crear las condiciones que permitan implementar el régimen internacional de agua de lastre.

El presente dossier está dividido en cuatro partes. La primera muestra un panorama general sobre el estado del arte de la investigación de las especies invasoras marinas. La segunda ilustra acerca de la construcción del régimen, destacando los principales instrumentos internacionales y estrategias diseñadas para la configuración del mismo. La tercera está reservada a la presentación de la primera propuesta de la Estrategia Nacional para el Control y Gestión del Agua de Lastre y Sedimentos de los Buques. Para ello, se identifican los elementos considerados clave en el desarrollo de la estrategia y sobre los cuales se soporta el plan de acción planteado. Concluye con el registros de los resultados parciales de muestreos realizados a lo largo de las tres épocas.
del año (seca, transición y lluvias) y en los tanques de lastre de buques de tráfico internacional de dos de los principales puertos localizados en el Caribe colombiano. Tanto en los tanques como en los sectores acuáticos se evaluó la calidad del agua con variables microbiológicas, fisicoquímicas y biológicas, de acuerdo con los requisitos consignados el Convenio de OMI en el 2004.

Adicionalmente, se destacan la digitalización de 2041 formatos sobre gestión a bordo en los buques del agua de lastre, a partir de los cuales se estableció que los puertos de Santa Marta y Puerto Bolívar cuentan con la mayor probabilidad de introducción de especies indeseables. Ello como consecuencia de la descarga de volúmenes de agua de lastre que sobre éstos se realizan. En este sentido, el objetivo final de este dossier es facilitar las bases y conocimientos para continuar trabajando en la gestión del agua de lastre en el territorio nacional. Este esfuerzo contribuye a facilitar por una parte la implementación de las medidas que sean necesarias para reducir el riesgo de invasiones acuáticas, de acuerdo con las directrices emitidas por OMI; por otra, contribuir a generar la legislación correspondiente para el país, que permita al Estado Rector del Puerto controlar este tipo de contaminación.

Capitán de Navegación Esteban Uribe Alzate
Director CIOH 2009-2010
Citar este capítulo como:
En los anales de la navegación, el lastre ha sido definido como piedra, arena, agua u otra cosa de peso que se pone en el fondo de la embarcación a fin de que ésta entre en el agua hasta donde convenga. El lastre, como elemento necesario para hacerse a la mar, ha estado presente desde los tiempos en que los fenicios empezaron a comerciar por vía marítima y sus mejores han estado ligadas con los avances en las Ciencias Náuticas (Ramírez, 2008).

Ciertamente, el agua de lastre es absolutamente esencial para la seguridad y operación eficiente de la navegación moderna, ya que provee balance, estabilidad, maniobrabilidad e eficacia de propulsión a los barcos sin carga (Sutton et al., 1998; GEF/Pnud/OMI, 2007; Hollasch et al., 2007; Fernández, 2008; Hua y Liu, 2008). Sin embargo, el agua de lastre es, al mismo tiempo, el vector primario responsable del transporte de especies marinas invasoras (Hewitt et al., 1999). El problema tiende a ser más agudo si se tiene en cuenta que cada buque puede transportar desde varios centenares de litros hasta más de 100 000 toneladas de agua de lastre, según las dimensiones y finalidades del buque. Se calcula que en todo el mundo se transfieren de 3 a 5 billones de toneladas de agua de lastre cada año.

Lo anterior traduce que todo lo que esté presente en la columna de agua (plankton, necton, bacterioplancton, virioplankton, etcétera) en el momento de la toma, inevitablemente es depositado en los tanques de lastre. Ello constituye un mecanismo de dispersión artificial entre los puertos de carga y descarga de todo este grupo de organismos (Lewis et al., 2003). En consecuencia se afirma que diariamente el transporte de especies por esta vía es superior a 10 000 especies (Carlton, 1999b) entre regiones biogeográficas, constituyéndose así en el vector de introducción de organismos marítimos (Figura 1.1).

1.1 Biología del agua de lastre: las especies invasoras marinas (LIM)

Las especies introducidas, también llamadas organismos exóticos, son organismos no nativos del lugar o del área en que se les considera introducidos de manera accidental o deliberadamente transportados a una nueva ubicación por las actividades humanas. Otros términos a menudo utilizados alternativamente para hacer referencia a especies introducidas son: aclimatado, extranjero, bioinvasivo, escapado, salvaje, invasor, naturalizado, inmigrante, no-nativo y xenobiótico. Las especies invasoras han sido

Figura 1.1 Proceso de lastrado y deslastrado en los buques (Modificado de: Programa GlaBallast-OMI).

5 A pesar de que las agencias gubernamentales han luchado por décadas por controlar a las especies invasoras en tierra y en agua dulce con distintos resultados, el control de las especies invasoras marinas se encuentra aún en un estado incipiente. La prevención de la introducción y el establecimiento debe ser prioritaria; sin embargo, muchas poblaciones de especies invasoras marinas ya se han establecido en todo el mundo (Sax et al., 2011).
identificadas por la comunidad epistémica y el sector político como una de las mayores amenazas a los ecosistemas marinos, como también han sido asociadas a los efectos negativos que causan en la diversidad biológica, la productividad, la salud humana, la economía de las zonas costeras y hábitat de las pesquerías (Carlton, 1999b). Estas invasoras pueden redireccionar los recursos para garantizar su crecimiento y reproducción, lo cual se traduce en la reducción o eliminación de especies nativas ya sea mediante depredación, competencia u otras formas; afectando ecosistemas naturales y causando catástrofes económicas y sociales (Lafferty y Kuris, 1996; Vítousek et al., 1997). De ahí que las especies invasoras, animales y plantas, en los hábitats naturales hayan sido reconocidas como uno de los mayores problemas ambientales del último siglo (Vítousek et al., 1997; Mack et al., 2000).

De acuerdo con el Fondo Mundial del Medio Ambiente (GEF, por su acrónimo en inglés), las EIM se consideran como una de las cuatro amenazas más grandes a los océanos del mundo (Lewis et al., 2003; Bax et al., 2003; Shine, 2007). Por otro lado, señala que las EIM son la segunda causa de la pérdida de biodiversidad y uno de los conductores de los cambios ambientales en el ámbito global. Pese a ello, y a diferencia de la contaminación química, la bioinvasión marina todavía no constituye una categoría de decadencia ambiental al interior de la cultura legal de la mayor parte de los países e instituciones internacionales. En parte, esta ceguera conceptual puede ser explicada por el hecho de que los ecosistemas marinos se aprecian aparentemente en condiciones normales. Sin embargo, la bioinvasión marina es una “contaminación biológica” irreversible que puede ser catalogada como invisible (Ramírez, 2008).

1.2 El impacto de las EIM

Los efectos directos e indirectos que las EIM generan al medio ambiente, la economía y la salud son cada vez más graves, y los daños causados a la naturaleza son a menudo irreversibles. Estas consecuencias se acentúan por el cambio global y por las alteraciones químicas y físicas que sufren especies y ecosistemas. Adicionalmente, las barreras naturales como océanos, montañas, ríos y desiertos que en algún momento permitieron la evolución de las especies y el desarrollo de ecosistemas únicos, de igual forma, han sido violentados en los últimos cinco siglos, especialmente durante el siglo XX, como consecuencia de la rápida aceleración de los viajes y el comercio internacional (Wittenberg y Cock, 2001).

1.2.1 En el medio ambiente

Los severos impactos ecológicos y económicos de las EIM proporcionan algunos de los más completos casos de estudio sobre los potenciales efectos negativos por las introducciones a través del agua de lastre (GEF, Pnud, OMI 2007). Las especies que se desarrollan fuera de sus áreas nativas de distribución dejan de estar sujetas a los límites y controles que normalmente limitan su desarrollo poblacional. Ello genera competencia directa con las especies nativas por espacio y alimento en el nuevo ecosistema en que se han establecido. En consecuencia, la extinción de las especies nativas es inminente y las pérdidas a la diversidad genética son irreparrables.

Al respecto, un gran número de casos han sido documentados. En la gran mayoría de

6 Las otras tres amenazas son: contaminación proveniente de fuentes terrestre, sobreexplotación de recursos marinos vivientes, y alteración física y destrucción de hábitats marinos.

Otros casos registrados en Australia corresponden a la estrella de mar *Asterias amurensis* y los dinoflagelados tóxicos de los géneros Gymnodinium y Alexandrium, originarios del Japón. En estos casos se registró que la presencia de estas especies afectaron a las industrias pesqueras y acuícolas de ese país (Vianna y Correa, 2004). De igual forma, especies de bacterias como *Vibrio cholerae*, de algas como *Undaria pinnatifida*, caraguelo *Coracias aenas* y poliquetos *Sabella spallanzani* también se han reportado como introducidas en ese país.

En el Mar Mediterráneo el alga *Caulerpa taxifolia* (Figura 1.2), introducida en 1996 por medio de buques nacionales, había ocupado cerca de 3000 ha. Actualmente, cubre miles de hectáreas a lo largo de la costa de Francia. También se ha documentado su presencia en España, Croacia, Mónaco, Túnez, Italia y el Mar Adriático (Vianna y Correa, 2004, Cevik et al., 2007). En el 2000 esta especie también fue reportada por primera vez en California (Dalton, 2000; Kaiser, 2000) y en Australia en el 2001. Las consecuencias de esta invasión han producido la sustitución de especies de algas nativas, limitando el hábitat de las larvas de peces e invertebrados, por lo cual la sobrevivencia de peces e invertebrados se ve seriamente comprometida (Meinesz et al., 1995).

Asimismo, el mejillón dorado (*Limnoperna fortunei*) (Figura 1.3) es un bivalvo de agua dulce nativo de China y del sudeste de Asia detectado en el río de La Plata en 1991. Se estima que llegó a este lugar en el agua de lastre de los buques que arribaron a Buenos Aires y Montevideo. Esta especie se ha extendido rápidamente corriente arriba, avanzando a una velocidad de 240 km al año y actualmente se puede encontrar en todo el sistema del río Paraná, extendiéndose por Argentina, Uruguay, Paraguay, Brasil y Bolivia (Matthews et al., 2005). Al momento de ser detectado se registró una densidad de población de 5 mejillones/m². Un año después dicha densidad aumentó a 36000 ind/m². En 1993 la cifra llegó a 80000 ind/m² y en 1996 casi duplicó esta densidad con 150 000 ind/m².

Figura 1.2 Alga *Caulerpa taxifolia*, especie introducida en el Mar Mediterráneo en 1996.

Figura 1.3 Mejillones dorados (*Limnoperna fortunei*) (Dunker, 1857).
De otro lado, la presencia de especies exóticas en Brasil también ha sido registrada. Específicamente el caso de Pyromaia tuberculata, Silla serrata, Charbdys helleri y otras especies de decapados se cree que fueron introducidas por el aumento en el flujo del transporte marítimo. Un bivalvo Isognomon bicolor y dos especies de coral Stereonephthya aff. Curvata y Tubastreaa coccinea fueron encontradas en el Cabo Frio, en la bahía de Isla Grande (Vianna y Correa, 2004).

La almeja asiática, Corbicula fluminea, bivalvo de agua dulce nativo del sudeste de Asia, se ha detectado en Europa, Australia, África y todo el continente de América. Se ha documentado que esta especie fue posiblemente introducida entre 1960 y 1970 en el agua de lastre de buques de tráfico internacional que visitaban los puertos de la costa Atlántica. Su expansión hacia tierra adentro se cree que fue a través de las embarcaciones locales que se desplazaban hacia los cursos de agua internos de la región. Ello ha traido como consecuencia que esta especie registre presencia desde el sur de la Patagonia hasta el norte de Venezuela, incluido el extremo inferior de la cuenca del Amazonas de Brasil (Matthews et al., 2005). De igual forma, se detectó en Argentina en 1992 el alga Undaria pinnatifida, originaria del Pacífico noroccidental en Japón, Corea, China, y Rusia. Se documenta que probablemente esta especie fue introducida a través del agua de lastre o del casco de un carguero o de un barco de pesca procedente de Japón o Corea. En 1999 había alcanzado aproximadamente 30 km a lo largo de la playas de Golfo Nuevo, detectándose igualmente 500 km al sur en la región de Caleta Malaspina (Matthews et al., 2005).

En Colombia los casos documentados de especies exóticas introducidas accidentalmente en el Caribe registran especies de crus-
táceos Charbdys helleri (Figura 1.4) e Hippolyte zosterica, los bivalvos Electroma sp. 1 y Electroma sp. 2, y el pez Omobranchus punctatus. Asimismo, se presume la introducción adicional de las especies de bivalvos Perna perna y Perna viridis. En el medio marino del Pacífico colombiano no se han registrado especies exóticas (Invemar, 1998; Borrero y Díaz, 1998).

Figura 1.4 Crustáceo Charbdys helleri, especie exótica introducida en el Caribe colombiano.

1.2.2 En la economía

Entre los impactos económicos globales de las EIM se han identificado pérdidas económicas en las pesquerías y la obstrucción de la infraestructura e industria de actividades de explotación costera (Pimentel et al., 2000). Los costos hasta ahora estimados para estos impactos económicos están calculados en aproximadamente US$100 billones por año.

1 La Unión Mundial para la Naturaleza (Ucns, por su acrónimo en inglés) considera algunos factores a tener en cuenta para la valoración de beneficios y costos de las especies invasoras, pero expresa igualmente que aún queda mucho por hacer.
Otros casos en los que las especies invasoras han generado impactos económicos en las regiones donde han sido introducidas señalan a la región de los Grandes Lagos de Estados Unidos de América. Ciertamente, el mejillón cebra (Dreissena polymorpha) (Figura 1.5) ocupa el 40 % de los ríos americanos de norte a sur (Gauthier y Stell, 1996). Esta especie, oriunda de Europa, ha causado graves daños y pérdidas económicas de millones de dólares. De igual forma, se ha indicado que para la Bahía de San Francisco las tasas de invasión se han incrementado en los últimos 20 a 30 años. Estas invasiones responden a la variedad y características de los mecanismos de transferencia (Carlton, 1996; Cohen y Carlton 1998; Ruiz et al., 1997).

En el Mar Negro la medusa peine (Mnemiopsis Leidy) ha sido considerada como uno de los factores de inestabilidad y colapso de las pesquerías, con la consecuente pérdida de millones de dólares. Asimismo, la almeja (Potamocorbula amurensis), detectada en la Bahía de San Francisco con densidades superiores a 10000 ind/m², ha sido señalada responsable del trastorno local de las pesquerías. Igualmente, el cangrejo Carcinus maenas, especie de origen europeo, reportada en las costas de América del Norte, Japón y sur de África, es considerada como un factor de inestabilidad para las pesquerías de bivalvos en lugares como la costa este de América del Norte (Bax et al., 2002).

Estos efectos han sido relacionados con impactos sociales debido a la disminución del empleo y actividades económicas directamente afectadas por la presencia de especies invasoras, pero también por la disminución del bienestar público dada la reducción de la calidad ambiental y áreas naturales circunvecinas. No obstante, las EIM también pueden generar impactos positivos, por cuanto en algunos casos se crean nuevas actividades económicas (pesquerías y acuacultura, por ejemplo) y el crecimiento del empleo relacionado con la generación de proyectos y programas de gestión de EIM. Ello permite adquirir conocimiento sobre los procesos dinámicos, interacciones y recursos de los ecosistemas (Bax et al., 2003).

1.2.3 En la salud pública

La preocupación referida a la calidad microbiológica del agua de lastre está relacionada con la presencia de patógenos y parásitos. Muy a menudo, el riesgo de enfermedades marítimas es evaluado no por la presencia directa de patógenos, sino por la presencia de microorganismos indicadores o por el número total de microorganismos en la muestra (Joachimsthal et al., 2004). En este sentido la contaminación microbiológica del agua de lastre, asociada con la toma de agua de sitios contaminados (áreas costeras) y luego descargada, representa un riesgo potencial para la vida marina y la salud humana. Ciertamente, muchas de las plagas, bacterias patogénicas y virales, incluyendo las bacterias que causan el cólera y cistos de dinoflagelados tóxicos, pueden causar graves daños a la población costera que esté en contacto directo con las zonas de descarga. Lo anterior genera la proliferación de enfermedades infecciosas, pérdida de vidas humanas, floraciones algales nocivas y altos costos económicos para los estados en la atención de las emergencias (Bailey et al., 2003).
Un ejemplo notable se presentó frente a las costas del Perú en 1999, cuando un carguero procedente del sur de Asia vació su sendina liberando una variante de cólera que se reprodujo con éxito en las aguas cálidas y muy contaminadas de la costa. Se documenta que la bacteria de *Vibrio Choleræ* fue consumida por los mariscos y a través de éstos llegó al ser humano. Esta situación provocó la muerte de 5000 personas. Se conoce igualmente que la epidemia se extendió por Sudamérica y afectó a más de un millón de personas (Matthews et al., 2005).

1.3 Vectores de introducción

La introducción y transferencia de especies invasoras a las regiones costeras ha ocurrido a escala global por cientos de años como resultado de las actividades humanas (McNeely, 2000; Wittenberg y Cock, 2001; Carlton, 1979, 1992, 1996, 1999b). Entre los mecanismos más comunes para la transferencia de especies se han incluido desde: 1. El movimiento de comunidades adheridas al casco del buque; 2. Las descargas del agua de lastre; 3. El movimiento o liberación intencional de especies para la acuicultura o la piscicultura; 4. La conexión de corrientes de aguas con otros canales, y 5. La liberación de especies asociadas con las industrias de animales o las prácticas de gestión (Ruiz et al., 1997; Bax et al., 2003).

Sin embargo, a las anteriores cabe adicionar el aumento del tráfico marítimo junto con la consecuente descarga del agua de lastre. Ello hace de esta rutinaria operación marítima el mecanismo más eficiente para la dispersión de organismos marinos (Souza et al., 2001). Indudablemente, se ha comprobado que la presencia de individuos planctónicos de una gran mayoría de grupos de organismos marinos en el agua de lastre, entre ellos: huevos, quistes o estructuras de resistencia, larvas, bacterias y pequeños invertebrados (Mallmann y Asmus, 2006) pueden sobrevivir la travesía del buque y colonizar el puerto donde son liberadas (Smith et al., 1995; Ruiz et al., 1997). La situación es más preocupante si se tiene en cuenta que más de 50000 especies de zooplancton y de 10000 000 células de fitoplancton pueden ser encontradas en 1 m³ del agua lastre (Subba et al., 1994; Vianna y Correa, 2004).

Ahora bien, la transferencia de especies invasoras se agudiza aún más en las regiones que presentan variaciones de espacios temporales. Para este tipo de regiones receptoras, las variaciones están relacionadas con los cambios estacionales propios de cada área geográfica. Ello ha traído como consecuencia que sobre ciertos periodos las especies invasoras alcancen mayores desarrollos, mientras que en otras épocas del año su población disminuya. En este sentido se han reportado diversos casos de bioinvasiones en regiones costeras. Particularmente, este estudio ha destacado el caso de la Bahía de San Francisco (Estados Unidos) por ser un caso de referencia en la transferencia de especies. En efecto, desde principios de 1870, muchos de los organismos invasores llegaron adheridos en los cascos de los buques que arribaban a esta bahía y se sabe que dichas especies provenían principalmente del este de América del Norte (Carlton, 1979).

En tiempos contemporáneos, el caso de la Bahía de San Francisco registra que entre 1930 y 1960 fue introducida la especie de ostra *Crassostrea gigas* desde Japón y con ésta una gran cantidad de organismos asociados (Ruiz et al., 1997). Actualmente, este fenómeno se está presentado no solamente en esta bahía sino en todas las regiones costeras, oceánicas y estuariñas del mundo, a través del agua y los sedimentos del lastre, que representan una amenaza para los océanos (Vianna y Correa, 2004; McNeely, 2000; Ruiz et al., 1997; Carlton, 1992; Hallograoff y Bolch, 1991).
1.3.1 El tráfico marítimo internacional

El transporte naviero es vital para la economía y mueve cerca del 80% de las mercancías en el ámbito global, casi dos tercios del comercio mundial se facturan por este medio (Raaymakers, 2002). Anualmente 5434 tone-ladas de mercancías son transportadas a bordo de buques mercantes, siendo las principales cargas a granel, el combustible, las materias primas para la industria y los comestibles. Ahora bien, si se clasifican por tipo o materia, se encuentra que el petróleo crudo representa la tasa más alta dentro del mercado, registrando un 30% de los movimientos, seguido por el carbón, 9.6%; mineral de hierro, 8.4%; derivados del petróleo, 7.7%; y grano, 4.2% (Endressen et al., 2004).

Valorados los montos e identificados los sectores de mayor relevancia en el transporte naviero, se ha considerado necesario tener una clara visión de la geografía de las rutas marítimas con relación a los tipos de carga arriba mencionados. Esta precisión permitirá analizar el impacto ecológico de esta actividad en las operaciones de ballasting. Para ello, las primeras referencias citadas en este dossier señalan a Hance D. Smith, quien en 1995 categorizó geográficamente los principales centros y nodos navieros a escala global. Al respecto, Smith señala que "el volumen de tráfico marítimo internacional se realiza entre los principales ejes de desarrollo a través del Pacífico Norte y el Atlántico Norte, indicando además que los trayectos navieros se llevan a cabo entre estos últimos y los núcleos menos desarrollados, los cuales se caracterizan por exportar materias primas a los ejes desarrollados" (Smith, 1995). De igual forma, Endressen et al. (2004), soportados en los registros Amver data, coinciden con Smith (1995), al registrar que el intercambio comercial por vía marítima entre los ejes norte y sur se efectúa en el Atlántico Norte, norte de Europa y el Pacífico Septentrional, representando aproximadamente en un 85% el transporte naviero a escala global.

La Figura 1.6 muestra la densidad del tráfico marítimo mundial, según el tipo de buque. Bajo este escenario, Endressen et al. (2004) profundiza aún más esta relación de tráfico marítimo y clasifica los corredores navieros según el tipo de carga. En ella destaca que "el transporte de carga a granel se lleva a cabo primordialmente en buques de alto calado con un sistema de rutas internacionales claramente definido". Adicionalmente, conforme a las bases de datos consultadas señala que los Estados Unidos, Europa y Japón son los principales exportadores de agua de lastre por medio de buques petroleros.

Por otra parte, en cuanto a la importación de dichas aguas se refiere, Endressen determinó a Oriente Medio, África y el Caribe como lasregiones más afectadas dentro de este tipo de intercambio (Figura 1.7). De otro lado, "el patrón de comportamiento para los..."

1 El Sistema Automatizado de Asistencia Mutua para el Salvamento de Buques (Amver, por su acrónimo en inglés) es un sistema mundial y voluntario de informes sobre embarcaciones para fines de búsqueda y salvamento marítimo (SAR). Los participantes del Amver son, generalmente, buques mercantes que informan al sistema sus planes de navegación. La información que se obtiene de dichos informes se ingresa en una base de datos, que calcula la posición de los buques en cualquier lugar del mundo en el que se pueda necesitar asistencia.

2 La versión originalmente expuesta por Smith coincide con esta apreciación. No obstante, explica que el volumen de tráfico marítimo internacional se realiza entre los principales ejes de desarrollo a través del Pacífico Norte y el Atlántico Norte. De igual forma, los trayectos navieros ocurren entre los ejes desarrollados y los ejes menos desarrollados. Estos últimos exportan materias primas a los ejes desarrollados y a la vez importan una cantidad de agua de lastre como consecuencia de esta actividad marítima comercial.

3 Los modelos de transporte de petróleo crudo han sido desarrollados por medio de Sistemas de Información Geográfica (SIG). Este modelo permite calcular el monto de agua de lastre, la frecuencia de descarga y la duración del viaje (Endressen et al., 2004).

4 EE.UU., principal país importador, con 13.2 millones de barriles diarios (mmbd) de crudo (+29.4%) y 3.3 mmbd de productos (+6.5%). Japón importó unos 4.0 mmbd de crudo (+4.7%) y 0.7 mmbd de productos (+1.1%).
buzos graneleros determinan que las áreas más importantes de exportación de agua de lastre son Asia y Europa, mientras que las regiones importadoras son el norte y sur de América, Australia y Asia” (Endressen et al., 2004).

En general, los volúmenes de agua de lastre han sido estimados en 3500 toneladas métricas (en adelante tm), dentro de las cuales 2174 tm corresponden al mercado internacional y 1300 tm al comercio nacional. En términos porcentuales, Endressen determina que a nivel internacional “los bujes petroleros represenan el 37% del agua de lastre transportada anualmente, mientras que los de carga a granel seca oscilan en un 39% (carbón, mineral de hierro, granos y otras materias a granel). El restante 24% incluye carga general, bujes portacontenedores, bujes Ro-Ro (cargamentos rodados, automóviles, camiones, trenes), bujes-tanque químicos y bujes-tanque LNG (Gas Natural Licuado). La contribución de éste último grupo puede ser inferior dado que la carga general y bujes portacontenedores raramente realizan operaciones de retorno en condiciones de lastre y lo usan primordialmente para mantener equilibrio e inclinación” (Endressen et al., 2004).

Ahora bien, a nivel regional gran parte de estos porcentajes son influenciados por operaciones navieras de mediana y pequeña escala12. Es decir, se desarrollan dentro del rango de las 200 millas náuticas cubriendo

12 Endressen et al. (2004) cita, por ejemplo, a Whall et al. (2002), quien sostiene que cerca de un 60 a 65% del tráfico marítimo europeo es regional.
rutas costeras entre el Mar del Norte y otros países europeos en el Mar Mediterráneo, en el Mar Caribe, y los mares del norte y sur de América. Según las estimaciones del tráfico global de Amver data (2001), se registra que cerca del 60 % del tráfico en el Atlántico Norte opera dentro del rango antes mencionado\(^3\) (Figura 1.8).

Lo anterior se traduce en que las 1300 toneladas métricas de agua de lastre mencionadas anteriormente no son sometidas a intercambio en altamar. Ello significa que en aspectos prácticos y operacionales, “cerca del 10 % del agua de lastre cargada a nivel internacional o por lo menos 200 tm no serán intercambiadas en mar abierto” (Endressen et al., 2004).

1.3.2 La demanda del transporte marítimo

De acuerdo con Fearleys, la demanda mundial de transporte marítimo creció en 2006 un 4.8 %, para alcanzar 6983 millones de toneladas métricas. Ahora bien, medido en toneladas métricas por milla el crecimiento fue todavía superior, del 5.5 % llegando a 30.7 billones de toneladas métricas por milla. Esta misma firma, experta en el mercado naviero internacional, calcula que el tráfico mundial por vía marítima en cuanto a la demanda de transporte de crudo y productos del petróleo se refiere creció un 2.3 %, sumando 2331 billones de toneladas métricas (Tabla 1.1). Ello significa que en el 2006 se transportaron por mar 1814 billones de toneladas métricas de

\(^3\)De acuerdo con Endressen et al. (2004) estas conclusiones coinciden con aquellas registradas por Corbett et al. (1999) y Ofstedal (1996), quienes reportaron que entre el 74 y 83 % de los buques navegan dentro del rango de las 200 millas náuticas contadas a partir de la línea de base recta.
crudo (+1.7 %) y 517 millones de toneladas métricas de productos del petróleo (+4.4 %). Valorada en toneladas métricas por milla la demanda de transporte de crudo se incrementó en un 3.0 % y la de productos un 5.0 %, totalizando 9.5 y 2.6 billones, respectivamente (Anave, 2007).

Si se trasladan estas cifras a las secciones anteriores, se deduce que el comportamiento de las estadísticas en cuanto al aumento de la introducción, transporte y volúmenes de aguas de lastre está estrechamente relacionado con la creciente alza de la demanda del transporte marítimo del mundo. Claramente, los registros expuestos por Fearleys indican que desde 1970 los embarques de carga de crudo y productos del petróleo, así como los principales gráneles (carbón, mineral de hierro y grano) han aumentado sus cifras año tras año en montos altamente significativos.

Adicionalmente, si se comparan los dos últimos años, la flota mercante de transporte mundial experimentó un crecimiento muy importante en el 2006 y casi idéntico porcentualmente al del año 2005, del 7.1 % en términos de GT\(^4\) y del 6.7 % medido en tone-

\(^4\) GT o arqueo bruto: es el tonelaje de la embarcación expresado en toneladas brutas (GT), de acuerdo con el Convenio Internacional de Arqueo de Buques de 1969, que figura en el Certificado de Arqueo. Véase, a este respecto, Real Decreto 930/1998 del 14 de mayo, Sobre Condiciones Generales de Identidad y Titulación de Determinadas Profesiones de la Marina Mercante y del Sector Pesquero.
Tabla 1.1 Tráfico marítimo internacional (Anave, 2007). Donde, tm = millones de tm y tm x milla = miles de millones de tm x milla.

<table>
<thead>
<tr>
<th>Años</th>
<th>Crudo y productos de petróleo</th>
<th>Principales graneles carbón, M. hierro, grano</th>
<th>Otras mercancías</th>
<th>Total tráfico marítimo</th>
<th>Distancias medias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tm</td>
<td>tm x milla</td>
<td>tm</td>
<td>tm x milla</td>
<td>tm</td>
</tr>
<tr>
<td>1970</td>
<td>1240</td>
<td>6487</td>
<td>437</td>
<td>2049</td>
<td>804</td>
</tr>
<tr>
<td>1975</td>
<td>1496</td>
<td>9730</td>
<td>556</td>
<td>2828</td>
<td>995</td>
</tr>
<tr>
<td>1980</td>
<td>1596</td>
<td>9239</td>
<td>700</td>
<td>3652</td>
<td>1310</td>
</tr>
<tr>
<td>1985</td>
<td>1159</td>
<td>5157</td>
<td>774</td>
<td>4179</td>
<td>1360</td>
</tr>
<tr>
<td>1990</td>
<td>1526</td>
<td>7821</td>
<td>881</td>
<td>4900</td>
<td>1570</td>
</tr>
<tr>
<td>1995</td>
<td>1796</td>
<td>9170</td>
<td>1021</td>
<td>5623</td>
<td>1895</td>
</tr>
<tr>
<td>1996</td>
<td>1670</td>
<td>9535</td>
<td>1019</td>
<td>5570</td>
<td>2017</td>
</tr>
<tr>
<td>1997</td>
<td>1929</td>
<td>9880</td>
<td>1093</td>
<td>5945</td>
<td>2146</td>
</tr>
<tr>
<td>1998</td>
<td>1937</td>
<td>9859</td>
<td>1086</td>
<td>5789</td>
<td>2149</td>
</tr>
<tr>
<td>1999</td>
<td>1965</td>
<td>10035</td>
<td>1113</td>
<td>5866</td>
<td>2218</td>
</tr>
<tr>
<td>2000</td>
<td>2027</td>
<td>10265</td>
<td>1207</td>
<td>6298</td>
<td>2361</td>
</tr>
<tr>
<td>2001</td>
<td>2017</td>
<td>10179</td>
<td>1251</td>
<td>6449</td>
<td>2385</td>
</tr>
<tr>
<td>2002</td>
<td>2002</td>
<td>9898</td>
<td>1299</td>
<td>6521</td>
<td>2519</td>
</tr>
<tr>
<td>2003</td>
<td>2113</td>
<td>10580</td>
<td>1383</td>
<td>7118</td>
<td>2637</td>
</tr>
<tr>
<td>2004</td>
<td>2215</td>
<td>111000</td>
<td>1489</td>
<td>7754</td>
<td>2789</td>
</tr>
<tr>
<td>2005</td>
<td>2279</td>
<td>11749</td>
<td>1613</td>
<td>8220</td>
<td>2770</td>
</tr>
<tr>
<td>2006</td>
<td>2331</td>
<td>12151</td>
<td>1728</td>
<td>8928</td>
<td>2924</td>
</tr>
<tr>
<td>06/05(%)</td>
<td>2.3</td>
<td>3.4</td>
<td>7.1</td>
<td>8.6</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Ladas de peso muerto\footnote{Toneladas métricas es el total de los pesos que puede transportar el buque expresado en toneladas métricas; es decir, el peso del cargamento, más el combustible, más el agua y provisiones en general. De otra manera, puede ser entendido como la diferencia entre el peso del buque completamente vacío y completamente cargado y aprovionado al máximo.} (en adelante tpm) A primero de enero de 2007 estaba integrada por 50214 buques (+1772 unidades) con 688 millones de GT y 1014,6 millones de tpm. Según este registro, los segmentos de la flota que más aumentaron en porcentaje de GT fueron los de portacontenedores (+15.0 %) y gasecos (+12.3 %) (Ramírez, 2008). De igual forma, experimentaron crecimientos también importantes, aunque algo inferiores a los de 2005, los graneles (+6.9 %) y los petroleros (+4.5 %). La flota de buques de carga general aumentó su GT en un 2.4 %. Únicamente disminuyó y de forma drástica, la flota de buques UBO\footnote{Buques diseñados para el transporte de mineral (ore), granul seco (bulk) y granel líquido (oil); buque OBD (ore-bulk-oil). Para una mayor comprensión, se entiende por carga a granel, aquella que no está contenida en algún envase y/o se encuentra sin orden y unas encima de otras, y posee en común un volumen, peso y tamaño determinado. Esta carga se transporta de forma suelta en la bodega del buque.} (+28.3 %). En resumen se tiene entonces que, los buques petroleros y graneles se sumaban el 56.3 % del GT y el 60.0 % de las tpm de la flota mundial y los buques de carga general (tanto convencional como containerizada), el 25.1 % del GT y el 22.3 % de las tpm (Anave, 2007).
Particularmente, cabe destacar que el comercio internacional de carbón generó el transporte por vía marítima de 550 millones de toneladas en 2006. Este volumen representa un crecimiento del 19.5% frente al 2005, según las estadísticas de las empresas del sector (Figura 1.9).

A este respecto los países asiáticos demandaron 340 millones de toneladas del total antes mencionado, un 17% más de lo que compraban dos años atrás (Corredor et al., 2007). Para el caso de Puerto Bolívar (Colombia) se registra el arribo de buques de hasta de 175 000 tpm, con 300 m de eslora y 45 m de manga. La tasa anual promedio de cargue actual es de 5900 toneladas por hora, con picos hasta de 9000 toneladas por hora. En el primer trimestre de 2008 la tasa de cargue pico se estableció en 12000 toneladas por hora (Cerrojón, 2008). Lo anterior obedece a la demanda creciente de este mineral, cuyas proyecciones se estiman en un 44% entre 2003 y 2015, y al doble del consumo actual para el 2030.

Ahora bien, dada la creciente demanda y continuo incremento del transporte marítimo mundial registrado, se ha considerado necesario analizar los factores que han impulsado dicho crecimiento en los últimos años. Los primeros índices de aumento de la flota mercante mundial registrados por Bax et al., (2003) ya señalaban un incremento de 6000 buques, estimado para entonces en más de 45000 naves. Estadísticas recientes en materia de construcción naval confirman esta tendencia a alza.

1.3.3 La industria naviera

El aumento en el transporte marítimo mundial se refleja en el incremento de la construcción naval (Figura 1.10), si se observa el año 2006 registró récords históricos tanto de nuevos contratos como de entregas y la carrera de pedidos a primero de enero de 2007 también era la mayor dentro de los últimos 30 años. Según Anave (2007), la contratación de buques creció en un 44.3%, alcanzando los 145.5 millones de tpm, un 13.7% por encima del anterior récord histórico absoluto de 128 millones de tpm que se había registrado en 1973. Se contrataron 605 petroleros con 66 millones de tpm, frente a 32 millones en 2005.

Este incremento obedece a la retirada del mercado de los petroleros de casco sencillo, que será definitiva a partir de 2010 para los buques de más de 5000 tpm; esta podría ser una de las causas de este alto nivel de contratación, también atribuible a unas expectativas de aumento de la demanda, aunque no necesariamente bien fundadas. Por el contrario, los encargos de graneleros sumaron 31.6 millones de tpm, un 11.7% más que en 2005, pero un porcentaje pequeño si se tiene en cuenta el fuerte aumento que experimentó el mercado de segunda mano de este tipo de buques.

En otros términos, está claro que la carrera de pedidos aumentó hasta sumar, al primero de enero de 2007, 329.6 millones de tpm que suponen el 32.5% de la flota mundial en términos de tpm. El 39% de los buques en

17 El porqué de citar los índices de construcción naval obedece, a más de las consideraciones expuestas, a dos relaciones fundamentales: la primera tiene que ver con la comparación espacial que hiciera Critopher Bright (1998) al señalar la capacidad de almacenamiento de los buques super-tanques y los buques super-tanques. En efecto, este tipo de buques están en capacidad de transportar más de 200 000 m³ de agua de lastre, que en términos de volumen equivalen a 2000 piscinas olímpicas. La segunda obedece a la lógica matemática expuesta por Bax et al. (2003), en la cual deduce que a mayor crecimiento de la flota mercante, mayor será el número de visitas a puerto, en consecuencia las posibilidades de incrementar el número de EIM aumenta al repetirse este ciclo.

18 Casco es el cuerpo del buque sin contar con su arboladura, máquinas, ni pertrechos.
cartera eran petroleros, el 23 % graneadores, un 17.0 % portacontenedores y un 5.5 % gaseros (Anave, 2007).

Valoradas estas cifras se infiere que la demanda del transporte marítimo, así como la construcción de naves a escala global constituye un sector en permanente y constante ascenso. De igual forma, este crecimiento tiene un impacto en el medio ambiente marino debido a que a mayor crecimiento de la flota mercante, mayor será el número de visitas a puerto; en consecuencia, las posibilidades de incrementar el número de especies invasoras, aumenta con cada oportunidad que se repita en este flujo (Bax et al., 2003). Lo anterior significa que el transporte marítimo internacional constituye el vector más activo de invasiones marinas, según lo indican Hewitt y Campbell (2007).

Figura 1.9 Consumo mundial de carbón y precios internacionales (Fuente: Corredor et al., 2007).

Figura 1.10 Construcción naval mundial 1970-2006 (Fuente: Anave, 2007).
Dossier para el control y la gestión del agua de lastre y sedimentos de los buques en Colombia
Capítulo II
Programas e iniciativas internacionales

Arribo buque portacontenedores al puerto de Cartagena.
Citar este capítulo como:
2.1 Régimen de regulación internacional de las EIM introducidas por agua de lastre

La preocupación internacional por la introducción de especies invasoras registra sus primeros indicios en la Convención Relativa a la Preservación de la fauna y flora en su Estado Natural, promulgada a comienzos de 1933 por los poderes coloniales asentados en África y en cuyo articulado acordaron que la introducción de cualquier tipo de especies a la fauna o flora, ya sea indígena o importada, salvaje o doméstica, debería ser estrictamente prohibida. Esta expectación por la integridad de ecosistemas protegidos, también fue plasmada en el artículo IX.1 de las Medidas Apropiadas para la Conservación de la Fauna y Flora de 1964. Allí las partes contratantes concertaron la prohibición de la importación de especies animales y plantas exóticas, excepto en los casos de conformidad con un permiso (Firestone y Corbett, 2005).

Diez años más tarde, el problema obtuvo una mayor atención reflejada en el seno de la Conferencia de las Naciones Unidas sobre el Derecho del Mar de 1974 donde, a petición de la delegación Noruega, se incluyó la problemática como materia de regulación y posteriormente fue normalizada en la Convención de las Naciones Unidas sobre el Derecho del Mar de 1982 (Unclos, por su acrónimo en inglés) (Art. 196.1). Un decenio más tarde, en la Conferencia de Naciones Unidas sobre el Medio Ambiente (Unced), celebrada en Río de Janeiro, los estados adoptaron la Agenda 21. En este escenario se hizo un llamado a los países para proponer a través de la OMI, reglas apropiadas para la descarga de agua de lastre y prevenir la propagación de especies inva-soras29.

Durante este mismo año emerge la Convención sobre la Diversidad Biológica (CBD, por su acrónimo en inglés) de 1992, mediante la cual se estableció en su artículo 8(h) la obligación a las partes de prevenir, controlar o erradicar la introducción de especies invasoras que amenacen los ecosistemas o hábitats naturales. Tres años más tarde, la 2da Conferencia de las Partes (COP, por su acrónimo en inglés) de la CBD adoptó el Mandato de Jakarta sobre Diversidad Biológica Marina y Costera, el cual incluyó la recomen-dación del Cuerpo Subsidiario de la CBD, sobre Consejo Científico, Técnico y Tecnológico (Sbstta, por su acrónimo en inglés), que señalaba a las especies invasoras como una amenaza para la biodiversidad marina y costera (Goote, 1997; Glowka, 2000). Este mandato fue seguido por un detallado programa de trabajo que identificó a las especies invasoras como uno de sus ejes temáticos, haciendo de éste un área de estudio que debe ser abordado como una cuestión independiente (Doelle et al., 2007). Posteriormente, en el año 2002, el CBD-COP estableció los principios guía para prevenir y mitigar los impactos de las especies invasoras y urgió a la OMI para que elaborara un instrumento internacional que regulara el agua de lastre e instara a los gobiernos para asegurar su entrada en vigor (Firestone y Corbett, 2005).

2.2 Convenio Internacional para el Control v la Gestión del Agua de Lastre y los Sedimentos de los Buques (2004)

2.2.1 Introducción

El Comité de Protección del Medio Marino en su 42º período de sesiones celebrado en la sede de la OMI en julio de 1999, bajo la presidencia de Australia, varias

29Véase Agenda 21, sección 17.30 (a) (vi).
delegaciones manifestaron su inquietud sobre aspectos de seguridad relacionados con el cambio del agua de lastre en el mar y subrayaron la necesidad de elaborar unas normas ambientales, así como de examinar a fondo cualquier posible alternativa. Las opciones relativas a los instrumentos jurídicos propuestos en el marco del Comité, giraron en torno a dos tipos de posibilidades: la de elaborar un nuevo convenio independiente o un nuevo anexo del Marpol 73/78. Respecto a éste, varias representaciones apoyaron la opción de un nuevo anexo, señalando que el convenio debería abarcar todas las fuentes de contaminación del mar, como se indica en su preámbulo y que además el Marpol 73/78 se consideraba en muchos países como un convenio internacional único, cuya finalidad era reglamentar las cuestiones relacionadas con la prevención de la contami-nación causada por la navegación marítima. Otras delegaciones, no obstante, apoyaron la opción de un nuevo convenio independiente por diversas razones, incluida la de que la naturaleza de las reglas para la gestión del agua de lastre de los buques difería de las que figuran en los anexos existentes del Marpol 73/78. Por consiguiente el Comité decidió votar a mano alzada y comprobó que la mayoría prefería la preparación de un nuevo convenio (37 votos a favor, 23 en contra).

Tras haber obtenido estos resultados, la orientación necesaria para el grupo de trabajo, el Comité le pidió que se examinara cuál sería el mejor mecanismo para que la OMI aprobara técnicas alternativas para el tratamiento del agua de lastre y elaborara una norma con arreglo a la cual pueda calibrarse la calidad del agua de lastre, a fin de asegurar su aceptación en el marco de la supervisión por el Estado Rector del Puerto. En consecuencia, el 13 de febrero de 2004, la OMI adoptó por consenso en desarrollo de una conferencia diplomática en Londres el Convenio Internacional para el Control y la Gestión del Agua de Lastre y los Sedimentos de los Buques (El Convenio), el cual exige a los Estados Contratantes implementar un Plan de Gestión de Agua de Lastre y Sedimentos, aprobado por la Administración Marítima de los Gobiernos. Adicionalmente, se contemplaron 15 guías o normas aprobadas por la OMI con el objeto de proporcionar la orientación técnica y necesaria en la implementación de este instrumento internacional (Tabla 2.1).

Se indica que el Convenio entrará en vigor doce meses después de la fecha en que por lo menos 30 Estados cuyas flotas mercantes combinadas representen no menos del 35% del tonelaje bruto de la flota mercante mundial, lo hayan firmado sin reserva en cuanto a ratificación, aceptación o aprobación. Hasta mayo de 2009, 18 estados lo habían ratificado, representando tan sólo el 15.36% del tonelaje de la flota del mundo. Los países que han ratificado El Convenio son: Albania, Antigua y Barbuda, Barbados, Egipto, Francia, Ke-

20 Dentro del marco de opciones presentadas, destacan la sugerencia presentada inicialmente por Grecia (Mepc 43/4/2), en la cual se propuso que deberían entrar en vigor nuevas disposiciones bajo la forma de un código antes de que se convirtieran en Derecho Internacional. De igual forma, las reglas propuestas a iniciativa de los Estados Unidos fueron sometidas a revisión por el Comité (Mepc 43/4/4, 1999).

21 El Comité tomó nota de la sugerencia formulada por la Federación de Rusia, apoyada por varios miembros de que debería examinarse la posibilidad de elaborar un instrumento único que tratara la gestión del agua de lastre (Mpec/43, 1999).

22 Respecto a las técnicas alternativas la delegación de Brasil pidió al Comité que aprobara el método de dilución como alternativa técnica válida para llevar a cabo el cambio de agua de lastre en el mar, con miras a su inclusión en el Código de gestión del agua de lastre. Varias delegaciones reconocieron que el método de dilución constituía una alternativa para el cambio de agua de lastre en la medida que cumpliera con los criterios de seguridad (Mepc 43/4/5, 1999).

23 La delegación de Bahamas subrayó la necesidad de contar con una norma de rendimiento respecto al medio ambiente para evaluar los distintos métodos e instó al grupo de trabajo a que concediese prioridad a esta cuestión en el próximo período de sesiones del Comité (Mepc 43/4/5, 1999).
<table>
<thead>
<tr>
<th>Nº</th>
<th>Título</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Normas para la recepción de sedimentos.</td>
<td>Adoptada por Resolución Mepc 152 (55)</td>
</tr>
<tr>
<td>G2</td>
<td>Normas para el muestreo del agua de lastre.</td>
<td>Resolución Mepc 171 (58)</td>
</tr>
<tr>
<td>G3</td>
<td>Normas para el manejo del agua de lastre: cumplimiento de los requisitos</td>
<td>Resolución Mepc 123(53)</td>
</tr>
<tr>
<td>G4</td>
<td>Normas para la gestión del agua de lastre y elaboración de planes de manejo del agua de lastre.</td>
<td>Resolución Mepc 127(53)</td>
</tr>
<tr>
<td>G5</td>
<td>Normas para la recepción de aguas de lastre.</td>
<td>Resolución Mepc 153(55)</td>
</tr>
<tr>
<td>G6</td>
<td>Normas para el intercambio del agua de lastre.</td>
<td>Resolución Mepc 124(53)</td>
</tr>
<tr>
<td>G7</td>
<td>Normas para la valoración de riesgo bajo la regulación A-4.</td>
<td>Resolución Mepc 162(56)</td>
</tr>
<tr>
<td>G8</td>
<td>Normas para la aprobación de sistemas de tratamiento de aguas de lastre.</td>
<td>Resolución Mepc 125(53)</td>
</tr>
<tr>
<td>G9</td>
<td>Procedimientos para la aprobación de sistemas de tratamiento del agua de lastre que usan sustancias activas.</td>
<td>Resolución Mepc 126(53)</td>
</tr>
<tr>
<td>G10</td>
<td>Normas para la aprobación y la supervisión de programas para prototipo de tecnología de tratamiento de agua de lastre.</td>
<td>Resolución Mepc 140(54)</td>
</tr>
<tr>
<td>G11</td>
<td>Normas para la construcción y diseño de estándar para el cambio de agua de lastre.</td>
<td>Resolución Mepc 149(55)</td>
</tr>
<tr>
<td>G12</td>
<td>Normas para el control de sedimentos en los barcos.</td>
<td>Resolución Mepc 150(55)</td>
</tr>
<tr>
<td>G13</td>
<td>Normas para situaciones adicionales incluyendo situaciones de emergencia.</td>
<td>Resolución Mepc 161(56)</td>
</tr>
<tr>
<td>G14</td>
<td>Normas para la designación de áreas para el intercambio del agua de lastre.</td>
<td>Resolución Mepc 151(55)</td>
</tr>
<tr>
<td>G15</td>
<td>Normas para el control por el Estado Rector del Puerto.</td>
<td>Pendiente</td>
</tr>
</tbody>
</table>

Tabla 2.1 Lista de directrices relacionadas con la implantación uniforme del convenio adoptadas desde el Mepc53 (Fuente: Gollasch et al., 2007; Mepc (55), (57) y (58)).

El nuevo convenio pretende prevenir los efectos potencialmente devastadores originados por la propagación de dichos organismos acuáticos dañinos a través del agua de lastre y los sedimentos de los buques. Éste contiene disposiciones técnicas como: el Plan de Manejo del Agua de Lastre, el Libro de Registros del Manejo del Agua de Lastre, el Manejo de los Sedimentos de los Buques, Inspección y Requerimientos de Certificación para el Control del Agua de Lastre, entre otras. Este marco de cooperación global constituye la iniciativa más grande en el avance de la investigación y desarrollo (I y D) para establecer sistemas y tecnologías para el tratamiento del agua de lastre.

De igual forma, la ratificación de éste instrumento implica hacer plena y totalmente efectivas las disposiciones de dicho Convenio, es decir, no admite reservas. No obstante,
Dossier para el control y la gestión del agua de lastre y sedimentos de los buques en Colombia

reconoce que el control de la transferencia de organismos acuáticos perjudiciales y agentes patógenos se realice teniendo en cuenta las condiciones y capacidades, políticas, estrategias o programas nacionales para la gestión del agua de lastre en sus puertos y en las aguas bajo su jurisdicción que sean acordes con los objetivos del presente Convenio y contribuyan a lograrlos. En ese sentido, el régimen se considera flexible y propicio para crear las condiciones que éste impone.

Asimismo, es oportuno por cuanto propende por fomentar y facilitar la investigación científica y técnica sobre la gestión del agua de lastre mediante la observación, medición, muestreo, evaluación y análisis de los efectos causados por la introducción de organismos y agentes patógenos. Actividades que actualmente en Colombia desarrolla la Dimar, a través del Clih.

Igualmente, prevé que el tiempo necesario para analizar las muestras no se utilizará como fundamento para retrasar innecesariamente las operaciones, el movimiento o la salida del buque, ello significa que las labores de inspección, control y muestreo sean compatibles y ajustadas a los propósitos de la investigación científica y estudios que dicho fenómeno genera, sin incurrir en inoportunas demoras que puedan afectar el buen desarrollo de las operaciones navieras. De generarse algún impasse en este sentido, el buque afectado tendrá derecho a una indemnización por los perjuicios ocasionados, hecho de remota posibilidad por cuanto que todos los procesos que lleva a cabo Dimar están debidamente acreditados de acuerdo a los estándares internacionales de calidad y regulados por normas ISO.

Es de resaltar que los resultados obtenidos de un muestreo acorde con los parámetros que señala el régimen, podrán constituirse en alertas tempranas para determinar si un buque representa un riesgo para el medio ambiente, la salud pública, los bienes o los recursos, prohibiendo a dicho buque que descargue agua de lastre hasta que se elimine el riesgo.

Por otra parte, la lógica de la acción colectiva que propone este régimen para enfrentar esta amenaza global que se cierne sobre los ecosistemas marinos, debe conducir a suministrar condiciones favorables para la cooperación, en el sentido que los regímenes establecen patrones de responsabilidad legal, proporcionan información simétrica y gestiona los costes de la negociación, posibilitando la aparición de acuerdos específicos (Keohane 1984; 1988). De manera más general, los regímenes hacen que sea más sensato cooperar, ya que disminuyen la probabilidad de ser defraudado. Y es por esta razón que se inscriben en una lógica coherente con la soberanía de los estados: lejos de constituir amenazas para los gobiernos permiten a estos conseguir objetivos que, de otro modo, quedarían fuera de su alcance, facilitando los acuerdos intergubernamentales (Keohane, 1984). Por lo tanto, puede considerarse que El Convenio se constituye en un régimen favorable a los propósitos que actualmente adelanta Dimar, en procura de mitigar las transferencias de organismos y agentes patógenos en aguas de jurisdicción nacional.

2.2.2 Revisión del Convenio OMI y directrices legales

Las directrices de la OMI para controlar la introducción de especies señalan a los estados como los actores responsables de tomar medidas urgentes para aplicarlas. Entre otras las directrices contemplan:

36 Keohane sostiene que los regímenes son un tipo especial de negociación que facilita a los gobiernos alcanzar acuerdos específicos a pesar de los problemas propios de la acción colectiva (1984).
• La formación y educación de los capitanes y tripulaciones de los buques.

• Procedimientos para el Estado Rector del Puerto y para los buques, los cuales indican que todos los barcos que lleven agua de lastre deben contar con un plan de manejo del lastre para evitar la transferencia de organismos acuáticos nocivos y patógenos. Dicho plan debe contemplar la generación de procedimientos seguros y eficientes para el manejo del agua de lastre.

• Procedimientos de registro e información para los barcos y puertos.

• Procedimientos operativos de los barcos que contemplan de forma detallada los medios de precaución y las opciones de manejo del agua de lastre (intercambio, vertido nulo o mínimo, vertidos en instalaciones ubicadas en tierra, nuevas tecnologías de tratamiento y métodos de procesamiento).

• Cumplimiento de las directrices, monitoreo constante y fiscalización.

2.2.2.1 Intercambio del agua de lastre

Durante el período de negociación del Convenio, el cambio de agua de lastre (BWE, por su acrónimo en inglés) fue considerado como un método para reducir el riesgo de introducir especies invasoras. El BWE ha estado en uso desde 1989 y considera que los buques que hayan tomado aguas de lastre en un puerto costero las cambien por aguas oceánicas (Locke et al., 1993; Murphy et al., 2004; Endressen et al., 2004). Este método continuará siendo usado durante el período de transición hasta que todos los buques den cumplimiento a los estándares de la OMI, en los que los mismos deben emprender el BWE en aguas de más de 200 millas marinas alejadas de la tierra y de mínimo 200 m de profundidad.

El BWE fue inicialmente considerado para naves que emprendían viajes transoceánicos, pero debido a la carencia de métodos alternativos también ha sido utilizado para buques que realizan viajes en aguas costeras (McCollin et al., 2007). Lo anterior debido a que en rutas costeras o regionales aumenta el transporte de organismos invasores entre puertos (Doblin et al., 2004; Lavoie et al., 1999; Popels y Hutchins, 2002; Wasson et al., 2001). Sin embargo, para mares regionales es importante considerar muchos factores como el tipo de método usado para el cambio, la duración del viaje, la profundidad del agua, la temporada y la salinidad del agua de puerto. De igual modo, es importante tener en cuenta del área de cambio, áreas que no estén afectadas por epidemias, floraciones de fitoplancton dañino y en lo posible que el cambio se dé bajo circunstancias específicas, lo más alejado de la costa (McCollin et al., 2007). Respecto a éste, la resolución Mepc 124 (55), adoptada el 22 de julio de 2005, estableció las directrices para el cambio del agua de lastre (D6), conforme lo establecen las reglas A-2 y B-4 del Convenio.

Las directrices de esta resolución ofrecen a los armadores de buques una orientación general sobre la elaboración de procedimientos específicos para cada buque para efectuar el cambio del agua de lastre. De igual forma, establecen que siempre que sea posible los propietarios de buques deberán recabar la ayuda de las sociedades de clasificación o de inspectores marítimos competentes para adecuar las prácticas del cambio del agua de lastre a diferentes condiciones meteorológicas, de carga y estabilidad.

Consideran, además, que la aplicación de métodos y procedimientos de gestión del agua de lastre constituye la base de una solución encaminada a prevenir, reducir al mínimo y, en último término, eliminar la introducción de organismos acuáticos perjudiciales
y agentes patógenos. En ese sentido, se cree que el cambio del agua de lastre facilita una vía que combinada con prácticas adecuadas de gestión del agua de lastre permite lograr los objetivos planteados.

Adicionalmente, las directrices están encaminadas a servir de orientación para que los aspectos operativos y de seguridad del cambio del agua de lastre se realicen sin poner en riesgo tanto la seguridad de la embarcación como de la tripulación. Se aplicará conforme a las características del buque y condiciones meteorológicas en las que se realicen el recambio, rutas comerciales, prescripciones del Estado Rector del Puerto, entre otras.

Sin embargo, cuando un buque no efectúe el cambio del agua de lastre de conformidad con lo dispuesto en la regla B-4.4 del Convenio por condiciones atmosféricas adversas, una falla en el equipo o cualquier otra circunstancia extraordinaria, se anotará en el libro de registro del agua de lastre. Por consiguiente, el Estado rector del Puerto podrá autorizar que la descarga del agua de lastre se efectúe con los procedimientos que éste determine, de acuerdo con las directrices que contiene medidas adicionales incluidas las situaciones de emergencia (D13).

El Convenio también establece que los buques que efectúen el cambio del agua de lastre de conformidad con la regla D-1 lo deben hacer con una eficacia del 95%, como mínimo y que para realizar este proceso lo puedan hacer a través de métodos evaluados y aceptados por la organización. Estos incluyen: 1. Descarga y recarga de aguas hasta alcanzar un 95% de cambio de volumen volumétrico (método secuencial). 2. Bombeo del agua de lastre de reemplazo, permitiendo que el agua fluya por rebose del tanque u otros medios (método de flujo continuo), y 3. Llenado del tanque de lastre por la parte superior con descarga simultanea por la parte inferior a la misma velocidad de flujo y manteniendo un nivel constante durante toda la operación de cambio (método de dilución).

En cuanto al método de cambio secuencial se ha indicado que éste es capaz de remover el 100% de contaminantes con sólo un cambio de volumen. Sin embargo, en tanques mal diseñados, con zonas muertas, este porcentaje llega a reducirse. Una desventaja del cambio secuencial es que las operaciones de bombeo incorrecto pueden poner en peligro la estructura del barco, generando como consecuencia una pérdida de estabilidad. El cambio continuo (también conocido como flujo continuo) siempre mantiene un tanque de lastre lleno.

La eficacia biológica del método de cambio continuo no ha sido probada con el cambio volumétrico del 95%, pero es 'aceptada' como equivalente, si se presume que al realizar tres cambios del volumen del tanque se conseguirá el cambio volumétrico de al menos el 95% del agua y que las especies invasoras del tanque se distribuyan de forma homogénea en la columna del agua, de manera que su disminución y movimiento seguirán el comportamiento del agua en las que se encuentran (Eames et al., 2008). Es preciso indicar que las directrices están diseñadas para que se revisen y actualicen en función de los avances técnicos que se desarrollen en relación con los métodos de cambio del agua de lastre y de las nuevas opciones de gestión del agua de lastre.

Para el caso de buques nuevos que se proyecten construir observando las directrices Mepc 149 (55), deben considerar los equipos que se vayan a utilizar en la gestión de las aguas de lastre, aspectos sobre la gestión y los procesos elegidos para llevarla a cabo. De igual forma, deberán considerar que la instalación de los sistemas de bombeo y tuberías del agua de lastre garanticen el funcionamiento y mantenimiento de la manera más sencilla posible. Igualmente, los tanques de agua de lastre se proyectarán de modo que faciliten todos los aspectos de la gestión, la gestión a distancia y el sistema de cambio del agua será tal que facilite el cumplimiento futuro de las normas indicadas en la regla D-2. (Figura 2.1).
CAPÍTULO II-Programas e iniciativas internacionales

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><2009</td>
<td>1500 a 5000</td>
<td>D-1 o D-2</td>
<td>D-2</td>
<td></td>
</tr>
<tr>
<td><2009</td>
<td><1500 >5000</td>
<td>D-1 o D-2</td>
<td>D-2</td>
<td></td>
</tr>
<tr>
<td>>2009</td>
<td>>5000</td>
<td>D-1 o D-2</td>
<td>D-2</td>
<td></td>
</tr>
<tr>
<td>=2009</td>
<td>>5000</td>
<td>D-1 o D-2</td>
<td>D-2</td>
<td></td>
</tr>
<tr>
<td>=2009 <2012</td>
<td><=500</td>
<td>D-1 o D-2</td>
<td>D-2</td>
<td></td>
</tr>
</tbody>
</table>

Figura 2.1. Fases planeadas para la implementación de estándares de gestión del agua de lastre establecidos por el Convenio para la Gestión del Agua de Lastre, considerando el intercambio del agua de lastre (Regulación D-1) y estándar más estricto para la gestión del agua de lastre (Regulación D-2) (Fuente: Gollasch et al., 2007).

Si el buque ha sido diseñado para utilizar como método de gestión del agua de lastre, el cambio de la misma en el mar deberá considerar que pueda llevarse a cabo con distintos estados del mar de oleaje y conocer la información sobre las condiciones más favorables en que pueda realizarse el cambio del agua de lastre. De igual forma, se debe considerar la reducción al mínimo de la carga de trabajo para la tripulación, como por ejemplo el número de etapas operacionales, también se debe reducir al mínimo el riesgo de presión y el flujo de agua de lastre en cubierta, y tener en cuenta las consecuencias del cambio de agua en el mar, las cuales incluyen la estabilidad, el calado mínimo de la proa, las fuerzas cortantes, los esfuerzos de torsión, la resonancia, el chapoteo, las embestidas en proa y la inmersión de la hélice.

Estas medidas ya han sido adoptadas por países como Australia, Canadá, Nueva Zelanda y EE.UU, los cuales exigen a los buques que entran en aguas bajo su jurisdicción, implementar medidas de manejo del agua de lastre antes de la descarga en sus aguas, conforme lo establecen las recomendadas por la OMI. Bajo estas condiciones se pretende que las especies cargadas en puertos y regiones costeras no sobrevivirán en el océano abierto y viceversa. De la misma manera, los buques también tienen la opción de tratar el agua de lastre considerando para la descarga el estándar especificado por OMI en la regulación D-2. De esta forma, se corrobora el compromiso y la decisión de algunos estados para evitar más introducciones en sus ambientes nativos.

2.2.2.2 Áreas para el cambio de agua de lastre

La razón fundamental para la designación de un área BWE es que ésta proporcione la seguridad necesaria a las naves mientras desarrollan la operación de cambiar el agua como una medida para reducir el riesgo, minimizando a la vez los efectos ambientales dañinos. Sin embargo, el desafío está en identificar áreas que proporcionen una reducción de riesgo aceptable desde una perspectiva biológica (Gollasch et al., 2007).

Se sabe que el cambio del agua de lastre en zonas profundas oceánicas o en mares abiertos reduce la transferencia de organismos acuáticos perjudiciales y agentes patógenos en
el agua de lastre de los buques. En consecuencia el Convenio estableció en la regla B-4, como ya se ha señalado, que siempre que sea posible debe efectuarse el cambio del 95 % del agua de lastre a por lo menos 200 millas marinas de la tierra más próxima y en aguas de 200 m de profundidad como mínimo. Cuando no sea posible realizar el cambio bajo las condiciones anteriormente expuestas, dicho cambio deberá realizarse tan lejos como sea posible de la tierra más próxima y en todos los casos por lo menos a 50 millas marinas de la tierra más próxima a una profundidad mínima de 200 m cabe mencionar que si por condiciones de seguridad del buque o de la tripulación, señaladas en el numeral 2.2.2.1, no es posible realizar el cambio a la distancia y profundidad establecida, el Estado Rector del Puerto en consulta con los estados adyacentes o con otros estados, podrá designar zonas en las que se permita al buque efectuar el cambio del agua de lastre.

Para ello, el proceso de designación de una zona para el cambio del agua de lastre consta de tres etapas: identificación, evaluación y designación. Dentro del proceso de identificación de las zonas de deslastre deben considerar aspectos jurídicos, de recursos importantes, zonas protegidas y aspectos relacionados con restricciones a la navegación. A la hora de seleccionar la ubicación y dimensiones de las áreas es importante considerar las restricciones relacionadas con la seguridad de la navegación, como son el aumento de la congestión del tráfico marítimo, la proximidad al tráfico de otros buques, ayudas a la navegación adecuada, protección de la zona y vías de navegación y sistemas de organización del tráfico.

En cuanto al proceso de evaluación de las zonas marítimas identificadas es importante valorar los riesgos cualitativos y cuantitativos que involucren principios como la eficacia, transparencia, uniformidad, exhaustividad, gestión de los riesgos, precaución, bases científicas y mejora continua. El proceso también implica que la designación de la zona reduzca al mínimo toda amenaza de riesgo para el medio ambiente, la salud de los seres humanos, los bienes y recursos, a través de criterios como: conocimiento de la dinámica oceánográfica, fisicoquímica, biológica y ambiental de recursos importantes y operaciones con el agua de lastre en el área; a fin de evitar áreas que contengan brotes infecciosos, zonas acústicas sensibles, zonas de recursos importantes, de baja dispersión de corrientes y de gran concentración de nutrientes.

El proceso de designación deberá tener en cuenta a aquellas áreas cuya ubicación y dimensiones planteen menos riesgo para el medio acústico, la salud de los seres humanos, los bienes o los recursos. Ello implica que dichas áreas deberán estar claramente delimitadas espacialmente para el cambio del agua de lastre y de conformidad con el Derecho Internacional. También es viable designar zonas para el cambio del agua de lastre durante unos períodos de tiempo determinados y precisos con claridad. De igual forma, en el caso de los sedimentos, cuando estos vayan a ser eliminados en el mar, dicha actividad debe realizarse en áreas situadas a más de 200 millas alejadas de la tierra y con profundidades mínimas de 200 m.

Los sitios más adecuados para la descarga deben considerar entre otros aspectos, estar lo más alejados de la costa; que la seguridad de la nave lo permita; que sea profundo, con efecto dispersante de corrientes y mareas rápidas; que estén alejados de emisarios submarinos, de áreas con brotes de infección, de operaciones de dragado, de áreas marinas protegidas, de estuarios y de zonas de pesca; que sean seguros tanto para los tripulantes como para las naves; que eviten en lo posible la desviación de la ruta de las embarcaciones, y se consideren tiempos razonables de cambio del agua.

La gestión del agua de lastre también establece que las zonas designadas por los estados rectores de puerto para el intercambio
del agua de lastre deberán estar sometidas a vigilancia y revisión periódicas. Ello permitirá comprobar la presencia en dichas zonas de organismos acuáticos perjudiciales cuya introducción podría deberse al cambio de agua de lastre. En caso de comprobar la introducción de organismos acuáticos perjudiciales, podrá cerrarse la zona designada para el cambio del agua de lastre, a fin de impedir que las nuevas especies se propaguén a otras regiones. Lo anterior tiene por intención presentar alternativas de reducción de riesgo, hasta que sistemas de tratamiento más eficientes puedan ser implementados para la gestión del agua de lastre.

2.2.2.3 Tardanza excesiva y desviación de ruta planeada

El Convenio indica que no debe someterse a los navíos a retrasar sus operaciones o desviarse excesivamente de su ruta inicialmente planeada. Además, las instalaciones de recepción deben funcionar de manera que no occasionen demoras innecesarias a los buques que las utilicen. De igual modo, los controles realizados por el Estado Rector del Puerto o laboratorios de investigación deberán ajustarse de tal manera que no afecten las operaciones y rutas de los buques. Sin embargo, Gollasch et al. (2007), indican que el término tardanza excesiva no ha sido claramente definido por OMI dentro del Convenio u otros instrumentos de implementación relacionados con las descargas de aguas de lastre.

Por otra parte, la delimitación de áreas para el intercambio del agua de lastre debe ser designada de manera que no ocasionen desviaciones de las rutas como ya se indicó. Sin embargo, si se tiene en cuenta los costos generados por las invasiones biológicas causadas por la descargas de aguas de lastre una reorientación de la ruta del buque puede ser de gran beneficio. Ello, si se conoce que el buque representa un riesgo por la calidad del agua de lastre transportada. Bajo estas condiciones, se justifica que éste tome el tiempo necesario para realizar el cambio del agua en las áreas señaladas. En este sentido la demora excesiva es aceptable.

2.2.2.4 Estándares de descarga

La Regla D-2 del Convenio establece como norma de eficacia, en cuanto a la gestión del agua de lastre, que los buques descarguen menos de 10 organismos viables por metro cúbico, cuyo tamaño sea igual o superior a 50 micras y menos de 10 organismos viables por millilitro, cuyo tamaño mínimo sea inferior a 50 micras y superior a 10 micras. De igual forma, la descarga de los microbios indicadores no deberá exceder la concentraciones de 1 Unidad Formadora de Colonias (UFC) por 100 millilitros o menos de 1 UFC por gramo (peso húmedo) de muestras de zooplancton en el caso del *Vibrio cholerae* toxicógeno O1 y O139; de menos de 250 UFC por 100 millilitros de *Escherichia coli* y de menos de 100 UFC por 100 millilitros de enterococos intestinales.

Pese a que estos límites considerados como aceptables dentro de la Regla D-2 del Convenio, fueron debatidos en varias sesiones muchas delegaciones no contaron con expertos en el tema que pudieran aportar su experiencia y conocimiento con respecto a la designación de los límites. Por consiguiente, es preciso indicar que el estándar de descarga hace referencia al número y dimensión de individuos más al tipo de especie. En tal sentido la identificación de especies no es objetivo de evaluación dentro de la conformidad planteada por la norma.

Específicamente si se tiene en cuenta que los buques llevan hasta 100 000 toneladas de agua de lastre o más, un número alto de organismos puede ser descargado conforme a este Convenio. Asumiendo que 100 00 tonela-
das del agua son descargadas, la concentración de organismos aceptable para individuos mayores o iguales a 50 mm es de 100 000. Aunque el número mínimo de individuos para establecer una población en una nueva región no se conoce, se cree que 100 000 individuos (aunque de diferentes especies) no eliminan el riesgo de introducciones de especies en todos los casos. Adicionalmente, los límites planteados por el Convenio en la Regla D-2 no consideran a los organismos con dimensiones inferiores a 10 micras y se conoce que un amplio número de especies, de algas causantes de las floraciones algales nocivas, alcanzan tamaños inferiores a los 10 micras (e.g. *Phaeocystis spp.*, *Pfiesteria spp.* y *Chrysochromulina spp.*), por lo cual la disminución del riesgo en este caso tampoco es viable.

2.2.2.5 Facilidades de recepción del agua de lastre y los sedimentos de los buques

La resolución Mepc 127(53) establece dentro de los procedimientos que deben seguir los Estados Rectors de Puerto en cuanto a la gestión del agua de lastre, que éstos pueden disponer de instalaciones con capacidades adecuadas para la eliminación ambientalmente segura del agua y sedimentos de lastre. De tal forma que las instalaciones deberán disponer de todos los medios necesarios para la eliminación del agua y los sedimentos, sin que se deteriore ni dañe el medio ambiente adyacente a la ubicación de las mismas, a la salud pública y a los bienes o recursos propios o de otros estados.

En cuanto a las directrices relacionadas con las instalaciones de recepción de agua de lastre y sedimentos Mepc 153 (55), éstas indican que una instalación de recepción debe ser capaz de recibir el agua de lastre y los sedimentos de los buques, estar dotada de tuberías, colectores, reductores y otros recursos que permitan, en la medida de lo posible, que todos los buques que deseen descargar agua de lastre en el puerto puedan utilizar dicha instalación. La instalación por tanto deberá disponer del equipo adecuado para el atraque de los buques que la utilicen y cuando proceda ofrecer un área de fondeo seguro, así como, personal capacitado que garantice la operación segura de las mismas.

Las directrices de las resoluciones Mepc 152 (55) y Mepc 153 (55) consideran que las instalaciones tanto para agua como para sedimentos, como mínimo, deben contar con información sobre la legislación nacional, regional y local que regirá la instalación, la recogida, manipulación y transporte del sedimento, los muestreos, pruebas y análisis de los sedimentos, el almacenamiento y condiciones de almacenamiento, la capacidad de recepción, las repercusiones para el medio ambiente, la formación del personal, el equipo necesario para la operación de descarga del sedimento de los buques, la salud de los operadores, la seguridad, el mantenimiento; las limitaciones operacionales, vías navegables, accesos y gestión de tráfico.

Consecuentes con lo anterior, la resolución Mepc 149 (55) estableció algunas consideraciones para mejorar las estrategias y operaciones de gestión y control del agua de lastre que involucran las instalaciones de recepción. En tal sentido, las directrices Mepc 153 (55) ratifican la necesidad de considerar la posibilidad de instalar conexiones entre el buque y el puerto para el transvaso de lastre a instalaciones de recepción del agua de lastre en tierra. Las disposiciones deben ser compatibles con una norma reconocida, como las Recomendaciones relativas a los colectores de petróleos y equipo conexo del Foro Marítimo.

Gollasch et al. (2007). Critical review of the IMO international convention on the management of ships ballast water and sediments. En este trabajo los autores exponen sus puntos de vista con respecto a los aspectos considerados dentro de la Convención para el manejo de las aguas y los sedimentos de lastre.
Internacional de Compañías Petroleras (Ocimf, por su acrónimo en inglés). Se admite que dicha norma se elaboró inicialmente para las conexiones utilizadas en el transvase de hidrocarburos. Sin embargo, los principios generales de la misma pueden aplicarse a las conexiones para el transvase de lastre, en particular a las secciones relacionadas con las bridas y los métodos de conexión por lo cual su aplicación es viable.

En cuanto a la capacidad de recepción de las instalaciones, las directrices consideran que a los buques se les informará sobre la capacidad máxima de agua de lastre a recibir, el régimen de transvase en metros cúbicos por hora, horas de funcionamiento, puertos, áreas de ataque, detalles de las conexiones de buques a puerto, necesidades de personal para ejecutar la operación, procedimientos para realizar la solicitud de utilización de la instalación, pagos y demás datos pertinentes para realizar la operación.

Es importante que el personal encargado de las instalaciones cuente con la formación adecuada, proporcionada por profesionales calificados. Dicha formación debe incluir aspectos como riesgos para la salud y el medio ambiente, riesgos relacionados con la manipulación del agua de lastre, seguridad, conocimientos y operación de los equipos involucrados en la operación, interfaz de comunicación buque-puerto, conocimiento de los controles de la eliminación de ámbito local y todos los aspectos relacionados con la seguridad de la operación tanto para los recursos, la salud, las instalaciones y el buque.

A pesar de disponer de las guías para el diseño e implementación de operaciones de instalaciones en tierra que reciba el agua de lastre, no hay ninguna exigencia obligatoria en el Convenio para que un puerto ponga a disposición tales instalaciones. No obstante, pensar en la puesta en funcionamiento de estas en las áreas de mayor vulnerabilidad a la introducción de especies puede constituirse en un gran avance para disminuir el riesgo y los impactos generados por los polizones del agua de lastre y los sedimentos. De igual forma, considerar tener instalaciones que provean a los buques agua de lastre limpias en los puertos de origen, también contribuiría con la reducción del riesgo de transferir bioinvasores a otros puertos (Gollasch et al., 2007).

2.2.2.6 Casos y eventos excepcionales

En diferentes situaciones puede presentarse el caso en que los buques no cumplan con las exigencias del Convenio, porque las condiciones meteorológicas no permiten el cambio del agua en alta mar; porque el Estado Rector del Puerto no ha identificado áreas para el intercambio, ni proporciona instalaciones de recepción de aguas de lastre en tierra o porque el buque no está equipado con la infraestructura de trabajo necesario para unirse a aquellas instalaciones donde exista y porque no se cuenta con sistemas de tratamiento de agua de lastre.

En ausencia de estas opciones o alternativas, el Convenio permite la descarga de agua de lastre dentro de las 50 millas náuticas (mn) de la tierra más cercana. Aunque es importante mencionar que a los buques por las razones indicadas que no realicen el intercambio o la gestión abordo del agua de lastre, se les debe exigir un documento en el que se especifique el motivo por el cual no se realizó dicha actividad.

Para los buques de pasajeros o de carga, tipos RO-RO o contenedores, pueden manejar volúmenes bajos de agua de lastre, haciendo un manejo apropiado de la misma; por ejemplo, bombeando aguas de lastre de un tanque a otro cuando realizan sus operaciones en puerto. En las situaciones anteriormente expuestas, lo más conveniente es que la descarga de aguas en los puertos sea la más mínima posible, de manera que se elimine el riesgo de introducción de especies.
2.2.2.7 Aprobación de los sistemas de tratamiento del agua de lastre

En el 52º período de sesiones del Mepc, el Comité acordó constituir un Grupo de examen para determinar la disponibilidad de la tecnología apropiada para alcanzar los niveles de rendimiento con respecto al agua de lastre exigidos de conformidad con la Regla D-2 del Convenio (Mepc (52), párrafo 2.21.5. El examen también incluiría una evaluación de los aspectos de seguridad en relación con el buque y la tripulación, la aceptabilidad ambiental, la viabilidad, la rentabilidad, la eficacia biológica y los efectos socioeconómicos. Sobre todo con respecto a las necesidades en materia de adelantos de los países en desarrollo, en especial los pequeños estados insulares en desarrollo.

En consecuencia la OMI expidió las resoluciones Mepc 125 (55) y Mepc 126 (55) adoptadas el 22 de julio de 2005 en las cuales estableció la Directrices para la aprobación de los Sistemas de Tratamiento del Agua de Lastre (D8) y el Procedimiento Para la Aprobación de Sistemas de Tratamiento del Agua de Lastre en los que se utilicen sustancias activas^28 (D9). Estas permiten garantizar el cumplimiento de las reglas D-2 y D-3, mediante la evaluación de la seguridad, la admisibilidad desde el punto de vista ambiental, la viabilidad y la eficacia biológica de los sistemas concebidos para cumplir las disposiciones y condiciones señaladas en el Convenio, relacionadas con los sistemas de tratamiento^29. De igual forma, estableció que estas directrices y procedimientos están sujetas a actualización en función de los avances tecnológicos y la experiencia adquirida.

Las directrices también consideran que el equipo de tratamiento debe ser resistente y adecuado para su uso en el medio marino. De igual forma, deben considerar en su construcción el material, la finalidad a la que se destinará, las condiciones en las que funcionará, las condiciones ambientales a bordo y el lugar donde se instalará, de manera que satisfaga las condiciones de seguridad de los lugares de instalación.

El sistema de tratamiento además debe estar provisto de un equipo de control que garantice su funcionamiento adecuado durante el proceso de tratamiento del agua, de manera que verifique y ajuste automáticamente la dosis o intensidad del tratamiento. De igual forma, debe contener funciones continuas de autoverificación, sistemas que indiquen el correcto funcionamiento del sistema o sus fallas, y adicionalmente, deberá estar en la capacidad de almacenar como mínimo datos de 24 meses y disponer de una función que permita la visualización o impresión de los registros para las inspecciones oficiales con el fin de garantizar el cumplimiento de la Regla B-2 del Convenio. De igual forma, es importante que este equipo cuente con medios sencillos para verificar la variación del cero, o la posibilidad de repetir la lectura y de retornar a cero los mecanismos de medición del equipo cuando se requiera.

Para someter a evaluación un sistema de tratamiento de agua de lastre ante la organización, es importante que éste cuente con una descripción del sistema de tratamiento, la cual debe incluir los planos de tuberías, los mecanismos de bombeo, las instalaciones de muestreo y las salidas de agua de lastre tratada. El sistema también debe contar con los manuales del equipo, con los

^28 Se entiende por sustancia activa una sustancia u organismo, incluido un virus u hongo, que ejerza una acción general o específica contra los organismos acuáticos perjudiciales y agentes patógenos.

^29 Entendido como cualquier sistema de tratamiento del agua de lastre que satisfaga o exceda la norma de eficacia de la gestión del agua de lastre establecida en la regla D-2. El sistema incluye: el equipo de tratamiento del agua de lastre, todo el equipo de control conexo, el equipo de vigilancia y la instalación de muestreo.
detalles de los componentes principales de funcionamiento y mantenimiento, los manuales técnicos y de operación que especifican claramente los procedimientos a seguir en cada etapa del proceso de tratamiento, así como del acondicionamiento de agua tratada antes de la descarga con la respectiva evaluación y efectos del tratamiento. Este deberá estar dotado de la descripción de las medidas a ser consideradas para vigilar que el agua tratada se ajuste a las normas de calidad exigidas, así como la descripción de los productos secundarios generados durante el tratamiento.

Para la aprobación del sistema a bordo, es necesario realizar pruebas en tierra y a bordo que garanticen el control de calidad de las mismas, razón por la cual el Comité decidió que estas pruebas se realizarán de conformidad con normas y estándares internacionales reconocidos. En este sentido, el sistema deberá contar con un programa riguroso que incluya un plan de gestión de calidad, así como, un plan de garantía de calidad de instalación y funcionamiento del proyecto que certifique el cumplimiento de las especificaciones contenidas. Dichas especificaciones, incluyen la evaluación de la documentación de las pruebas y funcionamiento del sistema, de las pruebas ambientales y de los métodos de análisis de muestras. En el caso de los sistemas con sustancias activas se debe suministrar información sobre la caracterización de los riesgos, los cuales incluyen pruebas de persistencia, de bioacumulación y de toxicidad. La figura 2.2 resume el proceso.

Existen más de 78 compañías inscritas que están desarrollando sistemas de tratamiento de agua de lastre. Tres de estas compañías, Alfa Laval Tumba AB, Hamann AG Sedna y NEI Treatment Systems LLC, han recibido por parte de la organización el certificado de aprobación de los sistemas desarrollados (Lloyds Register, 2008). En consecuencia con la aprobación de sistemas de tratamiento para el agua y los sedimentos de lastre se busca asegurar una aplicación uniforme de los estándares contenidos en el Convenio internacional de agua de lastre y sedimentos.

2.2.2.8 Toma y análisis de muestras

El sistema de tratamiento del agua de lastre a bordo de los buques, estará provisto de puntos de muestreo que permitan la recogida de muestras representativas del agua de lastre del buque. Por esta razón deberá contar con una lista o diagrama de la distribución de los puntos de muestreo en las tuberías y en los tanques de agua de lastre. En cualquier caso, los puntos de muestreo estarán situados en la entrada del sistema de tratamiento del agua de lastre, antes de los puntos de descarga y en cualquier otro lugar que la Administración estime necesario para el muestreo destinado a verificar el funcionamiento adecuado del equipo. Al tomar las muestras para ser analizadas, se deberán controlar parámetros como el pH, la temperatura, la salinidad, el oxígeno disuelto (OD), los sólidos suspendidos totales (SST), los carbones orgánicos en disolución (COD), los carbones orgánicos particulados (COP) y la turbidez (NTU).

Siempre, será necesario tomar muestras de agua al comienzo, durante y al final de la descarga. En estos casos, para que la comparación de organismos de tamaño mínimo sea igual o superior a 50 micras, con arreglo a la norma de la regla D-2, se recogerán al menos 20 litros de agua del afluente y 1 m³ de agua tratada por triplicado. Si las muestras se concentran para el recuento, se concentrarán utilizando un tamiz cuya malla no supere las 50 micras en sentido diagonal. Para que la evaluación de organismos de tamaño mínimo sea igual o superior a 10 micras, pero inferior a 50 micras, se recogerá al menos 1 litro de agua del afluente y un mínimo de 10 litros de agua tratada. Si las muestras se concentran para su recuento, se utilizará un tamiz cuya malla no
1 Aprobación inicial

Solamente es necesario disponer de datos del laboratorio a escala y el tiempo de descarga se predice a partir de un modelo de dilución simplificado.

Pueden presentarse expedientes de registros existentes.

Evacuación con carácter confidencial.

Caracterización y análisis de riesgo. Aprobación Inicial e informe a la organización.

La organización distribuye entre las partes la lista de sustancias aprobadas.

2 Aprobación definitiva

Utilización de sustancias activas que han recibido la aprobación básica.

Homologación de conformidad con las directrices pertinentes de la OMI.

Confirmación de la toxicidad residual del agua de lastre descargada con la evolución que se realiza dentro de la aprobación.

Aprobación del sistema de tratamiento del agua de lastre en el que se utilicen sustancias activas.

Publicación de la lista de aprobaciones.

Figura 2.2 Proceso de aprobación definitiva de sistemas de tratamiento de aguas de lastre y de sustancias activas o preparados a bordo de los buques (Fuente: Resolución Mepc OMI 126 (53)).
Control por parte del Estado y muestreo del agua de lastre

El artículo 9.1 del Convenio estipula que a todo buque el que sean aplicables las disposiciones del Convenio, esta sujeto a inspecciones para verificar la conformidad de las mismas. Dicha inspección está dirigida a: verificar que existe a bordo un certificado válido, inspeccionar el libro de registro de agua de lastre y realizar un muestreo de agua de lastre cuando se requiera. Consecuente con lo anterior, las autoridades portuarias podrán realizar la toma y análisis de muestras para verificar el cumplimiento de las reglas que hacen parte del Convenio y de acuerdo con los procedimientos establecidos por OMI en la resolución D-2 Pautas para el Muestreo del Agua de Lastre.

No obstante, verificar el cumplimiento de la regla demanda la necesidad de establecer claramente los métodos y procedimientos a utilizar para verificar el tamaño y número de organismos vivos indicados en la norma, de manera que se eviten problemas jurídicos en el momento en que se halle un incumplimiento de la misma. En consecuencia, es importante considerar la cantidad mínima de agua que se necesita para comprobar la conformidad, el tamaño de los individuos (si se considera solo el cuerpo o las demás partes como antenas y espinas delgadas), si el tamaño aplica para organismos individuales o coloniales (algas) y los criterios que determinarían la viabilidad o no de los organismos en el momento de la inspección.

cumplan las consideraciones consignadas en la guía G-2 (Resolución MePC 171 (58)).

En síntesis, puede indicarse que mediante la adopción del Convenio se generó el compromiso internacional para reducir el riesgo de impactos causados por las bioinvasiones marinas. En este orden de ideas, cada país y región puede unir esfuerzos para estudiar la forma en que dicho instrumento sea implementado, ya sea a través de acuerdos, convenios o protocolos específicos, siempre que estos convenios y acuerdos sean consecuentes con el instrumento adoptado globalmente. Y aunque aún es necesario direccionar algunos aspectos mencionados en los apartados anteriores, es importante empezar a considerar los recursos y requerimientos necesarios para cumplir con las obligaciones consideradas en la norma. Lo anterior, con el fin de evitar incurrir en mayores gastos a causa de los impactos generados por las especies invasoras del agua de lastre.

Para ello OMI ha puesto en ejecución la fase preparatoria del nuevo proyecto conocido como Asociación Globallast (Global-Last Partnership), con miras a la realización a escala global del proyecto Construyendo Asociaciones para Asistir a los Países en Vía de Desarrollo a Reducir la Transferencia de Organismos Acuáticos Dañinos en Aguas de Lastre de los Buques (BuildingPartnerships to Assist Developing Countries to Reduce the Transfer of Harmful Aquatic Organisms in Ships' Ballast Water), el cual está en desarrollo desde el año 2006.
Finalmente, es de resaltar que este componente incluye una mayor asociación con la industria para involucrar esfuerzos en el desarrollo e investigación de la relación costo-beneficio, a fin de generar nuevas tecnologías para el tratamiento de aguas de lastre.

2.3.2 Enfoque regional

Se han involucrado catorce regiones, de las cuales seis son de alta prioridad. Lo interesante de este componente es la oportunidad que ofrece a los países miembros de la Asociación Globalast de participar y aprender de las actividades emprendidas por parte de los estados designados líderes en cada región. A tal efecto y observando este panorama, las regiones desempeñarán un papel de coordinación para desarrollar estrategias, políticas y programas de orden nacional.

La esencia de este componente, como Organización de Coordinación Regional (OCR), es un elemento clave en la construcción del régimen, por cuanto al interior de su estructura permite tener contacto con los diseñadores de la política exterior ambiental de cada país y el ventaja de contar con se como la pieza clave de la...
Figura 2.4 Enfoques de la estrategia Proyecto GloBallast (Fuente: GEF, Pnud, OMI, 2007- Proyecto Asociación GloBallast).

coordinación entre los países de la región.

2.3.3 Enfoque nacional

Es considerado como un componente significativo del país, puesto que establece una vía rápida como País Líder Colaborador (PLC) v País Socio (PS) en las regiones consideradas prioritarias por la Global Environment Facility (GEF). Este componente es determinante porque los países considerados líderes deben comprometerse a desarrollar e implementar una Estrategia Nacional para la Gestión del Agua de Lastre y los Sedimentos de los buques y adoptar las reformas políticas, jurídicas e institucionales necesarias para llevar a cabo esta misión.

Asimismo, está claro que las medidas internacionales pueden marcar el inicio de este proceso y las organizaciones regionales pueden contribuir a convocar países y diversos actores, pero es a nivel nacional (e industria) en donde las acciones tomadas son determinantes para reducir los riesgos de la introducción de especies invasoras por aguas de lastre de los buques.

En particular, las actividades nacionales son diseñadas para proveer herramientas y técnicas que permitan a los países de la Asociación reformar su estructura legal, política e institucional, en orden a establecer una relación costo-beneficio rentable para mejorar la gestión del agua de lastre, en su propósito por reducir los riesgos de bioinvasión, generados por efectos de la navegación marina.

La Asociación GloBallast emerge como marco de cooperación para los países miembros de la agrupación al dibujar una
cartografía para alcanzar las reformas políticas e institucionales que señalen la singladura al resto de países de la coalición. Sin embargo, dado que el proyecto Construyendo Asociaciones está dirigido a países en vía de desarrollo, este componente deberá tomar en consideración la interacción Estado-ONG que propone Raustiala. Al respecto, este autor sostiene que dicha relación se traduce en una contribución materializada en el suministro de información, evaluaciones y estadísticas, entre otras, que el Estado ha de maximizar en aras de reducir sus gastos y redireccionar los recursos escasos hacia otras necesidades.
Dossier para el control y la gestión del agua de lastre y sedimentos de los buques en Colombia
Capítulo III | Estrategias a implementar para enfrentar el problema
Citar este capítulo como:
Se inicia entonces la tercera parte de esta investigación que está reservada a la presentación de la primera propuesta de la Estrategia Nacional para el Control y Gestión del Agua de Lastre y Sedimentos de los Buques. Para ello, el primer apartado identifica los elementos considerados clave en el desarrollo de la estrategia y sobre los cuales se soporta el plan de acción planteado. Posteriormente, se enumeran las acciones trazadas para formular la estrategia nacional que permita reducir y mitigar los efectos adversos que las especies invasoras marinas ocasionan a los ecosistemas marinos, la salud pública, la economía y regiones consideradas vulnerables a este campo de actividad. Las acciones delineadas se han estructurado sobre siete objetivos, indicando las metas a alcanzar y los resultados esperados, con base en los principios orientadores que ha señalado el Programa de las Naciones Unidas para el Medio Ambiente (Unep, 2000a-b).

Este apartado ha sido diseñado como un primer gran esfuerzo institucional para contribuir a crear las bases que permitan una eficaz implementación de los acuerdos regionales e internacionales para enfrentar la creciente bio-invasión marina.

3.1 Elementos vitales para el desarrollo de la estrategia

El primer paso para generar un programa nacional para la gestión de especies invasoras debe estar encaminado a distinguir entre las especies exóticas dañinas y las no dañinas, e identificar los impactos de las primeras sobre la biodiversidad autóctona (Wittenberg y Cock, 2001). Esta estrategia también debe incluir la formulación de metas y objetivos para implementar el plan de acción relacionado con las especies invasoras, así como una valoración inicial que incluya información sobre especies nativas e invasoras, junto con sus impactos, de manera que ésta pueda ser utilizada como punto de partida para el desarrollo del programa nacional.

Identificados los puntos de la evaluación inicial para tener la base sobre la cual se fundamentará el plan de acción a seguir en la creación de la estrategia nacional, será necesario identificar un grupo integrado por todos los sectores interesados que fomente el desarrollo de una iniciativa de lucha contra las especies invasoras. Este grupo tendrá la tarea de reunir, evaluar y presentar todo el material adecuado sobre especies invasoras por agua de lastre, en el que se indique la amenaza para la biodiversidad de los ecosistemas costeros del país y la necesidad de tomar medidas al respecto.

Cuando se tenga el diagnóstico o la evaluación inicial esté terminada y el grupo de trabajo nacional esté consolidado, el siguiente paso es crear la estrategia nacional. Lo ideal es que se encargue de ello a un único organismo de bioseguridad marina facultado en el país para tal fin. Es importante indicar que esta estrategia debe quedar integrada en otras iniciativas y planes de acción nacionales, permitiendo la colaboración de diferentes sectores e indicando qué medidas son prioritarias para implementar los planes de prevención y gestión, de acuerdo con el diagnóstico inicial recopilado.

Finalmente, dentro de los primeros pasos para el diseño de la estrategia, es importante tener en cuenta los marcos legales e institucionales de prevención y gestión de especies invasoras por agua de lastre. Por lo anterior, es necesario identificar qué leyes nacionales son relevantes y cuáles son las instituciones competentes para que se involucren y apliquen los mecanismos que sean necesarios en su ejecución. Asimismo, es importante identificar qué falta, cuáles son los puntos débiles y las posibles incoherencias encontradas (Wittenberg y Cock, 2001).

3.2 Razones por las cuales es necesario que toda la nación se comprometa

Toda estrategia, plan o política que surjan para solucionar problemas que afecten el medio ambiente, la salud pública y la economía...
de las zonas costeras, proporcionan un marco de referencia importante para que todos los sectores vinculados, gubernamentales y no gubernamentales, científicos y académicos, realicen actividades conjuntas tras un mismo objetivo.

Las acciones coordinadas con el compromiso y la responsabilidad de apoyar cualquier acción que facilite controlar, y en último caso, mitigar los impactos causados por invasores del agua de lastre bajo un plan formulado y acordado, permitirán, en primer término, prevenir el ingreso de nuevas especies invasoras, salvaguardar la bio-diversidad y ecosistemas vulnerables de las regiones costeras colombianas y disminuir los costos de mitigación de impactos por el establecimiento de nuevas especies en los ecosistemas nativos.

De igual forma, con el compromiso de todos se facilita la adopción de medidas adecuadas para reducir el riesgo de introducción o exportación de especies potencialmente invasoras. De esta manera se podrá suministrar y recibir información acerca del carácter potencialmente invasor de las especies, de los impactos causados por éstas en otras regiones, del cumplimiento de los procedimientos o normas nacionales e internacionales y, si es posible, del apoyo de programas de capacitación y transferencia de conocimientos de países expertos sobre lecciones aprendidas en sus regiones.

3.3 Obtener el apoyo de instituciones relevantes

Para obtener el apoyo suficiente, adecuado y necesario para hacerle frente a la problemática de las invasiones por el agua de lastre es necesario considerar dos objetivos:

- Identificar a las personas u organizaciones influyentes como científicos, medios de comunicación, políticos, organizaciones internacionales relacionadas con el tema y que tengan estrecha relación con los líderes de la nación.
- Contar con el apoyo de expertos externos, de manera que éstos puedan influir en los tomadores de decisiones del país para hacerle frente a esta problemática mediantede la presentación de conferencias, estrategias implementadas en otros países y experiencias aprendidas.

Es también adecuado identificar, personas u organizaciones que hayan sido o estén siendo afectados por las invasiones causadas por las especies invasoras del agua de lastre. Esta identificación puede resultar del trabajo desarrollado en la evaluación inicial, de manera que junto con ellos se puedan preparar planes de acción para superar el problema. De este modo se promueven iniciativas como resultado de las intervenciones, debates, reuniones y acuerdos que se generen con todas las partes interesadas.

3.4 Institucionalizar el compromiso

Es importante identificar la organización encargada de plantear y poner en funciona-miento la estrategia nacional para hacer frente a la problemática de la introducción de especies por el agua de lastre. Si son varias las instituciones directa o indirectamente relacionadas con el tema, es pertinente tomar medidas que permitan mejorar la cooperación entre ellas. Así se asegura el cumplimiento de los objetivos planteados en la estrategia, se asignan responsabilidades y, si es necesario, se asegura la reducción eficaz de la competencia, si llegara a existir. Ello permite lograr acuerdos formales de coordinación de las actividades. Finalmente, se sugiere que en el desarrollo de una estrategia nacional se debe involucrar tanto al Gobierno como las instituciones no gubernamentales. El proceso puede también ocurrir a nivel regional, donde la política ambiental y los planes de acción ya estén coordinados regionalmente.
3.5 Componentes cruciales en la estrategia nacional

Lo primero es establecer la visión, metas y objetivos de la estrategia contra las especies invasoras. Esta estrategia debe estar integrada en el compromiso de toda la nación para poner en práctica un plan de acción en pro de la conservación de la biodiversidad, del cuidado de la salud pública y de la protección de la infraestructura costera industrial del país.

Adicionalmente, la estrategia debe estar formulada dentro de un marco global que involucre otros planes nacionales, destinados a mejorar la salud pública de las comunidades costeras, la conservación de la biodiversidad y la protección portuaria. Lo anterior, conforme a que los problemas causados por las especies invasoras del agua de lastre son competencia tanto de la Autoridad Marítima Nacional como de otras autoridades ambientales del país.

Asimismo, es conveniente señalar que todos los actores interesados en hacer parte de la estrategia deben participar desde el principio, de manera que se eviten conflictos de intereses, se retrasen o veten acciones por algunas entidades alegando que no han sido informadas.

Sumado a lo anterior, es muy importante definir responsabilidades nacionales para la prevención, detección temprana y control de las especies introducidas por el agua de lastre. Por esta razón, es necesario crear una base de datos que incluya información referente a la distribución, propagación, posible propagación y amenazas que puedan representar las especies introducidas por el agua de lastre. De igual forma, se debe contar con información de interacciones entre las especies introducidas y las nativas, origen de las especies y taxonomía de las mismas. Esta información debe ser difundida al mayor número de usuarios posibles, de manera que se conciencie a la masa crítica, se incluyan estas listas en las bases de datos internacionales y se contribuya de esta forma con el aporte de información a la generación de iniciativas en el ámbito global.

La generación de estudios de levantamiento de líneas base o de información sobre la biodiversidad nativa de las áreas más afectadas por las descargas de lastre, contribuye a disminuir la problemática de las especies desconocidas y a establecer prioridades en el control de especies.

Dentro de los elementos de la estrategia nacional pueden considerarse entre otros:

3.5.1 Construir capacidades institucionales

A partir de la evaluación inicial del problema es posible identificar argumentos suficientemente convincentes para que se apoye el compromiso nacional. En consecuencia, involucrar funcionarios del más alto nivel (tomadores de decisiones) es una prioridad para que se estructure y sostenga la estrategia. Para ello, es necesario que se identifiquen instituciones y funcionarios de gran influencia, así como científicos y organizaciones internacionales que apoyen investigaciones relacionadas con la introducción de especies causadas por el agua de lastre. De igual forma, es importante realizar reuniones con comunidades afectadas por este tipo de invasiones para que de esta manera se identifiquen los mecanismos más adecuados para la cooperación.

Cabe mencionar que este fortalecimiento institucional depende en gran medida de la iniciativa y recursos nacionales, del compromiso que cada institución participante tenga con el objetivo propuesto y de los mecanismos de cooperación que se generen para consolidar la capacidad operativa de las instituciones involucradas en la prevención, seguimiento, detección, erradicación y control de las especies invasoras transferidas por el agua de lastre.
3.5.2 Construir capacidad de investigación

Este tipo de capacidad debe orientarse hacia la generación de conocimiento suficiente para desarrollar metodologías apropriadas en el análisis de riesgo de las especies identificadas como ya introducidas. Este aspecto involucra entrenamiento a todos los niveles para lograr que los objetivos trazados en la estrategia se cumplan con el mayor grado de responsabilidad. Lo anterior implica la capacitación de diversos grupos en taxonomía; en prevención y detección temprana; en control y divulgación, así como el desarrollo de investigaciones orientadas a la definición de métodos de control de las especies transportadas en el agua de lastre.

De igual forma, dentro de este aspecto se desarrollan actividades orientadas a conocer los mecanismos de establecimiento de las especies, la biología de las mismas, sus impactos sobre la biodiversidad nativa, la economía y la salud. De esta manera, la información producto de las investigaciones contribuye a la comprensión del fenómeno de las invasiones biológicas, la generación de herramientas o instrumentos que faciliten la generación de alternativas de solución, la implementación de acciones de control, manejo y erradicación en las áreas afectas y vulnerables y la implementación de programas de prevención y detección temprana.

3.5.3 Promover el intercambio de información

Se considera que uno de los principales obstáculos de la gestión eficiente de especies invasoras es la falta de intercambio de información y experiencias entre instituciones e investigadores. Ello debido a que gran parte de la información es nueva o de difícil acceso. En consecuencia es necesario crear de manera urgente mecanismos de comunicación, que contengan información relacionada con todas las implicaciones generadas por las especies invasoras del agua de lastre. Se requiere, asimismo, que esta información sea presentada en formatos estandarizados, de manera que pueda ser usada por el mayor número de usuarios posible y se facilite el intercambio y comparación de la información. De la misma manera, es conveniente impulsar el desarrollo de elementos que faciliten la cooperación entre los organismos oficiales e instituciones vinculadas con el sector marítimo del país en los ámbitos local, nacional y regional, para consolidar planes y programas que faciliten la

![Figura 3.1 Procesamiento de muestras en laboratorios de la Dimar-Cioh.](image-url)
gestión y control de las especies transferidas por el agua de lastre.

Es igualmente importante impulsar la creación de redes o grupos interdisciplinarios nacionales, regionales e internacionales, cuyo propósito sea facilitar información, apoyar actividades científicas, vacíos de información e incluso transferencia de conocimiento sobre especies invasoras contenidas en el agua de lastre. Es importante indicar que los grupos y las redes creados se vinculen a otro tipo de programas, como el de especies invasoras pertenecientes a la Red Iberoamericana de Información sobre Biodiversidad o al Programa Global de Especies Invasoras. Esta acción hará que los planes, estándares y experiencia de estos grupos faciliten la toma de decisiones, el acceso a la información, las alertas tempranas, mecanismos de acción oportunos y el cumplimiento de las metas propuestas.

Bajo este marco de actividades para establecer coordinación externa con otros grupos de investigación o instituciones encargadas de trabajar en el problema de las invasiones biológicas, se espera que el país haga parte de foros nacionales, regionales e internacionales, que le permitan acceder a nuevos acuerdos de cooperación y herramientas legales para fortalecer y soportar mecanismos que se implementen en la estrategia nacional y así poder combatir las invasiones causadas por el agua de lastre. De igual modo, se podrá tener acceso a la información y disponer de la generada en redes de investigación con trayectoria internacional, con estándares internacionales preestablecidos, que facilitan el desarrollo de las actividades técnicas planteadas dentro de la estrategia nacional y el proyecto global.

3.5.4 Desarrollar políticas económicas e instrumentos

Contempla el desarrollo de marcos legales y jurídicos consistentes, coherentes e integrados que respalden la gestión en el ámbito de las invasiones biológicas por aguas de lastre, en especial, para evitar el desastre en zonas cercanas a lugares de alta importancia ecológica, áreas marinas protegidas, comunidades indígenas, y áreas de importancia pesquera y comercial. De igual forma, se refiere a la implementación de políticas claras que permitan a las autoridades de control exigir a las tripulaciones de los buques los tratamientos de control y los planes de gestión a bordo, antes de efectuar las descargas de agua de lastre. En este sentido, se debe empezar por realizar una revisión a los marcos jurídicos existentes. Así se podrán identificar los instrumentos legalmente vigentes, fomentar su utilización y actualización, cuando de lugar para detectar contradicciones, vacíos de información legal y ajustes. Estas acciones son fundamentales para desarrollar marcos regulatorios específicos para disminuir las introducciones por agua de lastre, de manera que no se impida realizar las acciones de control.

Este aspecto involucra el desarrollo de instrumentos para el oportuno control de la introducción de especies por agua de lastre y la formulación de mecanismos para controlar o erradicar las que hayan sido introducidas. Dichos instrumentos facilitan la búsqueda de soluciones al problema, de manera que el principio “el que contamina paga” podrá ser utilizado como acción que facilite la implementación de los procesos formulados en la estrategia nacional, además de contribuir con el logro de los objetivos. En este caso, acciones como la formulación e implementación de normas nacionales que reglamenten la gestión del agua de lastre, conforme lo establecen los convenios internacionales de este campo de acción y de diversidad biológica, evitarán más introducciones, minimizarán los impactos causados en las áreas afectadas, viabilizarán el control y protegerán la salud, la biodiversidad y la economía de las áreas costeras colombianas.
3.5.5 Fortalecer marcos nacionales, regionales e internacionales

Este aspecto considera el establecimiento de mecanismos que permitan, de acuerdo a los marcos legales, institucionales, políticos, diplomáticos o técnicos existentes; consolidar grupos de trabajo que faciliten la implementación de medidas de prevención, control, monitoreo y erradicación de especies introducidas. Así, cuando en un país o región son concientes del peligro que representa una especie nativa en sus áreas vecinas, se debe informar sobre las posibles características invasoras e impactos de la mencionada especie para los estados de importación. Lo anterior conlleva acciones que permitan la generación de acuerdos entre países que regulan los sistemas de intercambio de información, asistencia técnica con base en experiencias aprendidas e implementación de sistemas de comunicación que faciliten dicha labor.

También se considera que para cumplir con los mandatos internacionales es necesario promover la creación de redes de información regional sobre las especies exóticas invasoras, unificar normas y criterios regionales e internacionales, reforzar el control fronterizo, promover la capacitación e investigación en el ámbito regional, facilitar acceso al financiamiento internacional y generar mecanismos de cooperación bilateral que permitan, entre otras cosas, establecer planes o programas de control por ejemplo, en cuencas fronterizas compartidas99.

3.5.6 Construir conciencia pública y compromiso

Para que la estrategia nacional funcione es importante que, de manera paralela a la gestión técnica, política y legal que se adelante para impulsar los planes de acción frente a las invasiones de especies por el agua de lastre, se adelanten también campañas de sensibilización, de tal forma que se modifique el comportamiento de todos aquellos cuyas acciones podrían limitar el impacto de las especies invasoras transportadas en el agua de lastre.

Por lo anterior, es importante que la comunidad marítima reciba información y desarrolle conocimiento acerca de las especies invasoras contenidas en el agua de lastre y sus impactos. Así los sectores involucrados podrán tener la capacidad para tomar decisiones que eviten conflictos con la conservación de la biodiversidad nativa, propia de cada área expuesta a la descarga de agua de lastre.

Actualmente se maneja el término del marketing social, área que puede proporcionar las herramientas necesarias para hacer frente al problema de forma sistemática con técnicas de eficacia comprobadas a la hora de influir en el comportamiento humano. Para que la campaña tenga éxito es adecuado recurrir a asociaciones estratégicas entre varios sectores, de manera que todos puedan aportar ideas y recursos para el desarrollo de la misma. El propósito de la campaña consiste entonces en lograr hacer conciencia de una serie de hechos, ideas o problemas a un sector del público en particular, de modo que dentro de este sector se puedan predisponer para desarrollar medidas apropiadas y tomen ellos mismos las medidas necesarias para apoyar la gestión planteada dentro de la estrategia nacional.

Al igual que en cualquier estrategia, para la socialización y sensibilización del problema, también es necesario emplear un mecanismo que permita lograr el objetivo de concientización y educación en el público. Este mecanismo puede considerar: 1. La realización de una evaluación inicial que incluya un análisis de la situación, resúmenes de entrevistas a

personas afectadas o involucradas en el tema; temas fundamentales como la dificultades, oportunidades, los medios más adecuados para informar y una lista de recomendaciones y sugerencias, con ayuda de expertos en el tema tanto de marketing, como de inversiones por agua de lastre. 2. La creación de un grupo o equipo operativo que permita unir esfuerzos para alcanzar objetivos comunes. 3. El diseño de una estrategia preliminar que defina el objetivo de la campaña, de acuerdo con la investigación preliminar llevada a cabo durante la evaluación inicial, junto con las audiencias a las que irá dirigida la campaña. 4. La realización de encuestas que midan el nivel de sensibilización de la comunidad respecto al problema y cómo ésta contribuye a resolverlo. 5. Implementar el plan de acción trazado en la campaña. 6. Realizar una supervisión o evaluación a la estrategia implementada, de manera que se pueda medir periódicamente el impacto causado y guiar el desarrollo de nuevos materiales divulgativos. 7. Finalmente, se debe buscar perfeccionar la estrategia implementada (Shine et al., 2000).

Consecuente con lo anterior, la comunicación al público a través de campañas de divulgación ofrece beneficios significativos, de modo que con éstas las personas con responsabilidades en la transferencia de especies invasoras, podrán entender claramente las consecuencias que pueden llegar a tener sobre las áreas afectadas. De igual forma, podrán diferenciar entre especies exóticas invasoras y especies nativas, aspecto fundamental para que las acciones de prevención y control puedan prosperar en todos los niveles.

En resumen, los sistemas de información dan a conocer al público en general los resultados de la gestión realizada por el grupo de trabajo nacional de agua de lastre. Entre ellos, la información relacionada con las especies identificadas como invasoras e introducidas por el agua de lastre con diferentes niveles de información, acciones legales implementadas, procesos de ratificación de los convenios internacionales, cursos de capacitación y avances en el plan de acción trazado, entre otros.

3.5.7 Preparar planes y estrategias nacionales

Considera el desarrollo de actividades destinadas a planear en el corto, mediano y largo plazo programas que involucren la prevención, detección temprana, erradicación, control y mitigación de impactos causados por los invasores del agua de lastre. Dichos programas deben necesariamente contar con el respectivo soporte financiero para su sostenimiento, así como con el apoyo jurídico que permita llevar a buen término los objetivos y actividades planteadas en cada plan.

En consecuencia, las instituciones del orden nacional que tienen la responsabilidad en investigación, manejo, administración, control de los ecosistemas marinos costeros y su protección con respecto a los invasores provenientes del tráfico marítimo internacional, deben de manera urgente generar y aplicar procedimientos que conduzcan a la identificación de impactos causados por estos invasores, incluyendo aspectos de Ecología, Biología, Epidemiología, implicaciones económicas y alternativas de solución.

El acompañamiento de estas actividades con la realización de campañas nacionales de concientización pública, pueden además extenderse al contexto regional. Ello complementa las acciones planteadas dentro de los planes y estrategias para evitar que especies exóticas invasoras sigan causando daños a la biodiversidad, a la economía y a la salud pública.

3.5.7.1 Establecimiento de prioridades

Este apartado considera la definición de las metodologías a implementar para establecer las prioridades de acción en cada componente de la estrategia (legal, político, admi-
nistrativo y técnico), para trabajar de forma integral con el soporte financiero adecuado y necesario para llevar a cabo cada acción prioritaria. En este sentido es importante que dentro de las acciones prioritarias se encuentren la resolución definitiva del problema, de manera que las especies de alto riesgo, cuyas poblaciones se estén estableciendo o se encuentren en una fase inicial del proceso de invasión sean priorizadas frente a las especies ya establecidas que hayan ocupado grandes áreas.

Por lo anterior, también deben ser considerados dentro de las prioridades los programas de erradicación y detección temprana, de forma que con el fortalecimiento de estos dos aspectos la probabilidad de invasión sea menor.

Otro aspecto a considerar dentro de las prioridades son los resultados del análisis del riesgo para las especies que ya se encuentren en las costas del territorio nacional. Ello permite generar los futuros planes de acción para su erradicación.

Bajo este contexto se espera establecer prioridades para prevenir, erradicar y controlar especies introducidas por el agua de lastre, de manera que con fundamento se establezcan las herramientas necesarias para resolver definitivamente el problema y se reduzca el impacto de las ya establecidas sobre los ecosistemas afectados.

3.5.8 Incorporar a las EIM en iniciativas de cambio global

Dentro del proceso de evaluación inicial para trazar el plan de acción sobre la problemática del agua de lastre, es importante establecer una lista oficial de especies invasoras introducidas por la descarga de agua de los buques en las diferentes zonas costeras del país. Esta constituye el marco de referencia nacional, regional e internacional para identificar los problemas existentes causados por éstas y los planes de acción a seguir.

La lista, junto con la información soporte de posibles afectaciones, se constituye en la base para procesos de reglamentación, planes de manejo y alternativas de solución, de acuerdo con el área afectada. Esta información es conveniente que se actualice constantemente, de manera que los procesos generados a partir de esta lista sean igualmente renovados y ajustados por quien hace uso de las mismas.

Asimismo, establecer mecanismos de intercambio de información que incluyan la lista oficial de especies introducidas por el agua de lastre, categorizándolas por el riesgo o amenaza que representen para la biodiversidad nativa, la salud humana y la economía de las regiones afectadas; junto con las acciones legales, administrativas, de control y de comunicación, son elementos de suma importancia para facilitar la gestión global del problema.

3.5.7.2 Coordinación externa

Dado que Colombia ha sido considerado como país líder en la segunda fase del proyecto global Construyendo Asociaciones, cuenta con una gran ventaja para acceder a la cooperación regional e internacional que actualmente tiene la OMI relacionada con esta problemática. De igual forma se sabe que Colombia ha suscrito acuerdos internacionales, los cuales facilitarán la implementación de actividades orientadas a la gestión del agua de lastre y los sedimentos en el territorio nacional.

3.5.9 Promover la cooperación internacional

Teniendo en cuenta que algunos marcos jurídicos internacionales indican que cuando una especie introducida en un Estado se propaga hacia los estados vecinos o a regiones enteras provocando daños medioambientales, la responsabilidad debería recaer en el Estado donde se originó la propagación. En este sentido, el principio 13 de la Declaración de Río insta a los estados a elaborar marcos legisla-
ativos nacionales en materia de responsabilidad y reparación a las víctimas de daños ambientales (Shine et al., 2000).

Colombia, mediante el compromiso de todos los sectores involucrados y el desarrollo de una estrategia nacional clara para prevenir, controlar y mitigar los impactos de invasiones causada por el agua de lastre, podrá contribuir, de acuerdo con el Derecho Internacional, con el planteamiento de alternativas que eviten causar daños a los vecinos originados por los polígonos del agua de lastre.

3.6 Estrategia de prevención

Como principio rector al interior del Convenio de Diversidad Biológica se ratificó la precaución. Lo anterior implica que, pese a la incertidumbre científica que pueda existir frente a las especies invasoras del agua de lastre en el territorio nacional, junto con los riesgos generados por las mismas, esta situación no debe ser motivo para no adoptar medidas preventivas contra su introducción. El mejor mecanismo es prever por todos los medios posibles la introducción de especies transferidas por el agua de lastre y más si éstas han sido identificadas como potencialmente invasoras. De este modo, un sistema de prevención eficiente debe promover el control en la fuente. En este caso es preciso establecer los procedimientos técnicos y operativos, con base en las directrices voluntarias implementadas por la OMI, antes de autorizar la carga o descarga del agua de lastre en las áreas costeras del país.

Resulta igualmente urgente promover el desarrollo de investigaciones orientadas al análisis de riesgo potencial, gestión del riesgo y comunicación del riesgo, incluyendo información sobre la evaluación de la magnitud y la naturaleza de las posibles consecuencias negativas causadas por las introducciones realizadas. Entre ellas la alteración de ecosistemas de gran importancia biológica, pesquera y económica.

Otro aspecto a considerar está relacionado con la identificación de las rutas de dispersión, en este caso el lastre de los buques de tráfico internacional que arriban a los puertos

Figura 3.2 Buque de carga, Caribe colombiano.

30 Según Ziller et al. (2007), las rutas de dispersión de una especie están definidas como los caminos por los cuales las especies son transportadas de un lugar a otro, a través de un movimiento que puede ser intencional o accidental, y considera tanto la introducción de nuevas especies como el movimiento de especies dentro del país.
nacionales. Por esta razón es igualmente importante identificar entre otras cosas los puertos más vulnerables a la invasión, en función de los volúmenes de lastre descargados, la identificación de las posibles especies introducidas a través del monitoreo constante a los tanques de lastre, la abundancia en las áreas de origen, probabilidad de sobrevivencia durante el traslado y las probabilidades de invasión y establecimiento en los puntos de destino. Con esta información se pueden soportar las acciones tendientes a la reducción de impactos e implementación de medidas preventivas permanentes.

3.7 Estrategia de alerta temprana

Los sistemas de detección temprana y acción inmediata son determinantes en el control de la bioinvasión acuática. En efecto, antes de su propagación las especies invasoras entran en períodos de latencia, razón por la cual es necesario conocer estas etapas de las especies identificadas como introducidas. Las gestiones en estos periodos son determinantes en la implementación de las acciones para su eliminación, dado que durante estas etapas la cantidad de individuos es muy baja. Se conoce además que entre más tiempo pase sin que la especie sea detectada, la probabilidad de que ésta se establezca es mayor y por tanto su dispersión puede llevar a ocupar grandes áreas. Lo anterior implica mayores costos de erradicación.

De este modo, es necesario emprender el desarrollo de acciones que generen la creación de redes nacionales y regionales que permitan trabajar en pro de la conservación de la biodiversidad. En tal sentido, es importante que se coordinen mecanismos adecuados de detección de especies con su respectiva advertencia. Una vez detectada una especie como potencial invasor, es necesario generar un plan de contingencia con acciones inmediatas, mecanismos de comunicación al público y programas de monitoreo para verificar las actividades de erradicación, junto con el control del impacto generado.

Por consiguiente, un sistema de alerta temprana debe promover el desarrollo de planes de acción para la erradicación de especies invasoras; la creación de redes de especialistas para la detección temprana que se encarguen de publicar información sobre especies invasoras, con sus respectivos análisis de riesgos; la implementación de programas de detección temprana en áreas prioritarias, como por ejemplo, aquellas que representen elevado endemismo o especies amenazadas o en extinción, con los respectivos planes de contingencia. De igual forma, es importante generar planes de monitoreo continuos en las áreas de alto valor ecológico, elevado ende- mismismo y prioritarias para la conservación cercanas a los puertos de mayor deslastre; mantener sistemas de apoyo para la identificación de especies entre miembros de la red en regiones nacionales y regionales. Con lo anterior se consolidarán sistemas de detección temprana y acción inmediata que soportarán el manejo eficiente de especies invasoras por agua de lastre antes que alcancen proporciones de difícil control.

3.8 Erradicación, control y seguimiento

Cuando las medidas preventivas fallan se recurre a programas de erradicación. Cuando las especies están en proceso de establecimiento y no han crecido extensamente pueden ser controladas con bajos costos. Por tanto, es importante definir la implementación de sistemas de erradicación y control de especies exóticas invasoras en áreas protegidas, definir prioridades y planes de control para las especies exóticas y las áreas de acuerdo con su importancia para la conservación biológica. Pero, es prioritario indicar que estos programas de control están precedidos de algunos soportes previos que facilitan la toma de decisiones. Dichos soportes incluyen entre otros, la prevención como meta inicial, la identificación temprana, respuestas de acción rápida, la capacidad para tomar decisiones frente a una
invasión, la determinación de métodos y medidas más apropiadas para enfrentar el problema y la identificación de las áreas más vulnerables.

3.9 Evaluación y dirección

Esta etapa involucra el desarrollo de indicadores que permitan medir el avance de las actividades planteadas dentro de cada objetivo. Dicho de otra manera, miden el porcentaje de cumplimiento de acuerdo con el cronograma establecido y los resultados alcanzados de cada una de las metas trazadas dentro de la estrategia nacional.

En consecuencia, la acción a implementar dentro de este aspecto considera la definición de indicadores de avance y de resultados para cada componente de la estrategia nacional. De igual forma, se deben definir reuniones que permitan verificar los resultados alcanzados, así como evaluar el reajuste de actividades cuando estas lo requieran. En este sentido, se espera que el grupo de trabajo nacional cuente con los mecanismos de control y evaluación relacionados con el cumplimiento de los planes de acción trazados para el desarrollo de la estrategia, de modo que se asegure una revisión permanente para el total cumplimiento de las actividades planeadas.

3.10 Recursos para la implementación

No menos importante es considerar los fondos financieros necesarios para desarrollar las actividades establecidas dentro de la estrategia nacional. En consecuencia, dentro de las acciones consideradas para asegurar la financiación de las actividades planeadas, se recomienda crear un directorio de fuentes de financiación para los planes de trabajo planeados; identificar y crear mecanismos de cooperación interinstitucional que garanticen el financiamiento de las actividades programadas; elaborar proyectos de investigación con recursos provenientes de cooperación internacional o cualquier otra fuente que facilite el desarrollo de los objetivos propuestos.

3.11 Estrategia nacional para la gestión del agua de lastre y los sedimentos: propuesta

3.11.1 Objetivo de la estrategia

Promover el desarrollo e implementación de medidas coordinadas y esfuerzos cooperativos en todo el territorio nacional para prevenir o reducir al mínimo los riesgos e impactos causados por la introducción de especies transportadas en el agua de lastre de los buques. Este objetivo contribuirá a disminuir los efectos adversos en la biodiversidad de los diferentes ecosistemas, así como en la economía y la salud pública.

Esta propuesta ha sido diseñada como eje para llevar a buen término los compromisos adquiridos por el grupo de trabajo nacional, asumidos como país líder y como guía en la realización de las tareas del plan de acción planteadas para la gestión del agua de lastre en el territorio nacional. La estrategia se propone:

- Despertar rápidamente conciencia en la comunidad marítima nacional e instituciones ambientales en cuanto a la introducción de especies por la descarga de agua y sedimentos de lastre y las alternativas de solución.
- Fortalecer la capacidad de cooperación local, nacional y regional para trabajar coordinadamente la problemática de las invasiones biológicas, causadas por el agua deslastre de los buques.
- Trabajar en la prevención para evitar la introducción de nuevas especies en el territorio nacional, de manera que se actúe eficaz y oportunamente cuando se descubran nuevas especies introducidas.
- Conocer y reducir los impactos causados por las especies ya introducidas.
Implementar, donde sea posible, programas para la recuperación de especies y ecosistemas que hayan sido afectados por especies introducidas por el agua de lastre y los sedimentos de los buques.

- Priorizar las acciones que se deben poner en práctica para abordar el problema.
- Contar con el instrumento o marco jurídico que permita reducir el riesgo de invasión por agua de lastre y los sedimentos de los buques, conforme lo establece el régimen internacional adoptado por la OMI.

Con base en lo anterior y los principios orientadores basados en los documentos Unep (2000a -2000b) para prevenir la introducción y mitigación de impactos derivados de las especies exóticas se construye y presenta un modelo de estrategia nacional. Dichos principios orientadores constituyen entre otros: el enfoque de precaución, enfoque jerárquico de tres etapas, enfoque de ecosistemas, responsabilidades de Estado, investigación y supervisión, educación y conciencia pública, prevención, intercambio de información, cooperación, mitigaciones de impacto, erradicación, retención y control (Gutiérrez, 2006).

3.11.2 Alcance

La estrategia aplica a todos los buques que arriban a puertos del territorio nacional colombiano. De igual forma, su contenido engloba a todos los organismos, plantas, animales, virus, bacterias o todo aquello que se introduzca por el agua de lastre o sedimentos y pueda causar daños, o constituya fuente de contaminación en el territorio nacional.

Asimismo, es una propuesta a considerar por parte de todas las instituciones nacionales que en el país estén encargadas de la protección de los recursos hidrobiológicos, la conservación del medio ambiente marino costero y el desarrollo sostenible de los mismos.

3.11.3 Terminología

La estrategia emplea la terminología consignada en el Convenio adoptado en el 2004 por la OMI. De igual modo, se consideran las definiciones del Convenio de Biodiversidad Biológica de 1992.

3.11.4 Metas

- Identificar a los invasores del agua de lastre y los sedimentos de los buques como un problema que amenaza a la biodiversidad nativa, la salud pública, la economía y bienestar de las áreas expuestas a las descarga de agua de lastre. Esta meta pretende concientizar a los responsables de la toma de decisiones en los ámbitos nacional, científico, académico y de la comunidad marítima nacional, sobre la importancia que tiene la implementación y aprobación de programas de la prevención, mitigación y control de las especies invasoras. Dicho de otra manera, esta meta procura promover el principio de la educación y conciencia pública.

- Contar con una lista de posibles invasores, áreas más vulnerables, impactos posibles y biología de las especies, de acuerdo con la frecuencia de visita de buques, lugares de procedencia del lastre y volúmenes de descarga, así como de especies nativas con potencial invasor. Lo anterior, con el fin de establecer prioridades de investigación, programas de prevención, control y mitigación. Con esta meta se promueven los principios de investigación y supervisión, intercambio de información, cooperación y construcción de capacidades. De igual forma, este objetivo permite cumplir con el aspecto de recolección, manejo e intercambio de información necesarios dentro de toda estrategia nacional.

- Establecer el levantamiento de información base ambiental en las áreas más afectadas
por las descargas de agua de lastre en el territorio nacional. Este propósito permitirá establecer el estado actual de los puertos y las prioridades de acción. Particularmente, aquellas relacionadas con la asignación de recursos y el accionar del Estado para prevenir, mitigar y controlar los impactos generados por la bioinvasión marina.

- Elevar los niveles de capacitación de personal técnico, biólogos, ecólogos, marinos, ingenieros ambientales, abogados, profesionales en relaciones internacionales y demás profesionales en ciencias y disciplinas afines para que apoyen los procesos de formulación e implementación de programas tendientes a mejorar la gestión del agua de lastre en el territorio nacional. Asimismo, establecer convenios de cooperación regional que faciliten el intercambio de información, asistencia técnica, capacitación de personal y apoyo en procesos de identificación taxonómica, identificación de riesgos, formulación de marcos jurídicos o normativos y programas de prevención, control o erradicación. En este sentido la meta fomentará la creación de condiciones mínimas para dicho propósito.

- Establecer la compatibilidad entre los marcos jurídicos y políticos actuales para la gestión del agua y los sedimentos de lastre, de manera que se estructure y apruebe el marco normativo nacional que regule la gestión y control de esta problemática ambiental. Para ello se requiere que el grupo de trabajo interinstitucional coordine de manera apropiada los mecanismos de acción y verificación de los planes y programas establecidos para la gestión del agua de lastre en concordancia con lo dispuesto en el proyecto global. En consecuencia, esta meta considera como principio orientador y eje fundamental el papel del Estado en el diseño de marcos legales, políticos e institucionales.

- Establecer mediante otras experiencias (regionales, nacionales o globales) la aplicación de instrumentos y enfoques que apoyen la formulación de planes y programas de acción para prevenir, mitigar y controlar las invasiones generadas por el agua de lastre. La meta se formula para tener en cuenta la importancia de las alianzas estratégicas en el desarrollo de las experiencias aprendidas.

- Desarrollar e implementar un sistema nacional de indicadores de seguimiento, monitoreo y ejecución con énfasis en sistemas basados en evaluación de riesgo y el uso de enfoques voluntarios. Particularmente observa como principios orientadores la precaución, evaluación de riesgo y participación voluntaria.

- Establecer si las especies introducidas en otros países pueden generar riesgos para la biodiversidad nativa, la salud pública o la economía nacional. Lo anterior, con el fin de promover la cooperación regional y responsabilidad entre países de la Asociación GloBallast, cuyos principios orientadores son el papel de los estados, intercambio de información y la construcción de capacidades.

- Establecer los patrones de dispersión de las especies identificadas como introducidas por el desastre de buques dentro del territorio nacional, de manera que se facilite oportunamente la toma de decisiones frente al control, mitigación y erradicación si fuera el caso. La meta considera el principio de la prevención enfocada a la identificación de las especies introducidas.

- Desarrollar e implementar sistemas de vigilancia en las áreas vulnerables a la introducción de especies invasoras, mediante mecanismos de coordinación rápida entre las entidades y disciplinas involucradas. Este propósito permite reducir el tiempo en la identificación de la especie y la respuesta para su efectivo control. De este modo la estrategia aborda el aspecto de la
detección temprana y respuesta rápida, considerando los principios de erradicación y jerárquico en tres etapas.

- Establecer e implementar programas de erradicación o control para especies identificadas como invasoras en el territorio nacional, de modo que la estrategia contempla el enfoque de erradicación y el control como medidas adicionales para la mitigación de los impactos.
- Elaborar planes de gestión de agua de lastre específicos para cada puerto. Los planes de este tipo pueden ser considerados como herramientas para la toma de decisiones frente al problema de las especies indeseables, transferidas por el agua de lastre.

3.11.5 Acciones a implementar

- Definir a la institución nacional encargada de coordinar las actividades del proyecto, junto con un coordinador nacional, conforme lo establece el Programa Asociación GloBallast.
- Desarrollar campañas nacionales de divulgación al más alto nivel (ministerios, Congreso, Cámara y Presidencia de la República, entre otros) y para todos los actores involucrados con las actividades marítimas (universidades, agencias marítimas, sociedades portuarias, armadores, centros de investigación, autoridades ambientales locales) en donde se dé a conocer el problema de especies exóticas invasoras transferidas por el agua de lastre.
- Crear un grupo de trabajo nacional que cuente con expertos en taxonomía para que apoye los procesos de identificación de especies introducidas por el agua de lastre.
- Definir las acciones y responsabilidades de los vinculados al grupo de trabajo nacional en el desarrollo de los programas, planes y estrategias relacionadas con la gestión del agua de lastre.
- Capacitar personal en el manejo del agua de lastre y los sedimentos, en taxonomía, estudios de impacto ambiental y evaluación de riesgos, marcos jurídicos y normativos.
- Identificar institutos nacionales, regionales e internacionales que apoyen los procesos de formación de personal. Lo anterior con fin de transmitir las experiencias aprendidas sobre las cuales se construyan procesos para implementar las actividades de la estrategia nacional.
- Desarrollar una valoración inicial rápida, que incluya ecología de especies nativas e introducidas, identificación de los puertos fuente y receptores de aguas de lastre, volúmenes de lastre descargados por puerto, impactos documentados de especies introducidas, la delimitación de áreas protegidas, áreas contaminadas, áreas afectadas por epidemias, áreas de alto valor ecológico.
- Establecer para cada puerto, a través de las rutas de navegación de los buques que arriban a cada uno de ellos, los lugares de mayor procedencia y destino, de manera que se facilite información sobre las características ambientales de los lugares de procedencia de nuevos invasores.
- Establecer listados nacionales de especies introducidas por el agua de lastre, que consideren todos los grupos taxonómicos y que estén sujetos a permanente actualización. Determinando hasta donde sea posible la fecha de introducción, tamaño de la población e impactos registrados.
- Generar y difundir mapas de distribución y localización de especies introducidas por el agua de lastre, modelando patrones de distribución. Asimismo, promover mecanismos de comunicación rápida y efectiva a los departamentos vecinos del área afectada y a los países en el ámbito internacional.
- Diseñar mecanismos de intercambio de información rápida como portales electrónicos, boletines informativos que permitan acceder y difundir datos sobre las especies listadas.
Definir los métodos más adecuados para el control biológico de las especies con mayor impacto sobre la biodiversidad, la salud o la economía, de manera que se reduzca o solucione su afectación.

Promover reuniones y talleres de trabajo que permitan actualizar la información relacionada con las investigaciones realizadas, la estandarización y socialización de nuevas experiencias y las discusiones de los resultados obtenidos.

Establecer un convenio de cooperación y coordinación interinstitucional con los puntos focales nacionales de instrumentos y organizaciones relevantes (Convenio de Biodiversidad, Fondo Mundial del Medio Ambiente (GEF, por su acrónimo en inglés), OMI, Ramsar, Ccpp, entre otros), a fin de estudiar, desarrollar e implementar los mecanismos nacionales para la adopción del convenio internacional sobre agua de lastre.

Liderar y coordinar concertadamente el desarrollo e implementación de la estrategia nacional, junto con los planes y programas que se deriven de la misma para reglamentar la reducción del riesgo e impactos de las especies introducidas por el lastre y sedimentos de los buques.

Revisar la estructura jurídica nacional actualmente vigente y orientada a la protección del medio ambiente marino, la contaminación marina y la biodiversidad biológica. Este objetivo permite identificar el camino para formular, organizar o fortalecer los mecanismos políticos e instrumentos legales más efectivos para disminuir los riesgos e impactos de nuevos invasores.

Consolidar los marcos jurídicos, protocolos y acuerdos actualmente vigentes en el territorio nacional, aplicables a la adopción e implementación del convenio de OMI para la gestión del agua de lastre.

Estructurar el desarrollo de una norma nacional acompañada de los respectivos planes de implementación para reducir el riesgo e impactos de especies invasoras. Así como, socializar e implementar la aplicación de la norma en el territorio nacional y definir acciones orientadas al seguimiento de la aplicabilidad de la norma y verificar su cumplimiento.

Desarrollar un sistema de monitoreo, evaluación y seguimiento con sus respectivos indicadores de medición que permita conocer las acciones a seguir, implementar y valorar frente a las prioridades establecidas para la evaluación de riesgos, mitigación de impactos, guías y protocolos de aplicación frente al control y adopción del convenio.

Formular y ejecutar programas de recuperación de las áreas afectadas por las invasiones provenientes del agua de lastre y los sedimentos, soportado técnica y legalmente. Para ello deberá observarse el estado, distribución y tendencia de invasores introducidos por el agua de lastre y los sedimentos en el territorio nacional.

Introducir en la toma de decisiones el enfoque de precaución, establecido por la normativa internacional acogida por Colombia, de manera que dentro de marcos definidos sobre evaluación de riesgo se consideren los impactos posibles frente a las especies nativas, la integridad de los ecosistemas y el funcionamiento de los mismos.

Establecer, socializar, implementar, hacer seguimiento y verificar la eficiencia de planes de emergencia específicos soportados, técnica y jurídicamente para combatir las invasiones generadas por el agua de lastre, donde intervengan todas las instituciones relacionadas con las actividades marítimas y preservación del medio marino.

Establecer mecanismos de comunicación entre los estados que permitan el intercambio de información, notificación y consulta sobre los impactos y especies invasoras por agua de lastre, de manera que se implementen medidas conjuntas de prevención,
erradicación y control o se redireccionen las actividades planteadas para el país cuando sea necesario.

- Estandarizar formatos, guías y procedimientos para el suministro de información a los estados, de manera que se intercambie información del comportamiento de las especies invasoras o potencialmente invasoras entre estados vecinos, países con ecosistemas similares, condiciones climáticas similares y antecedentes de invasiones comunes.

- Consolidar dentro de un plan de gestión portuario toda la información jurídica, técnica y ambiental, que permita a la autoridad marítima, corporaciones ambientales, armadores, gremio marítimo y demás actores involucrados, conocer aspectos específicos del puerto frente a la gestión del agua y los sedimentos de lastre.

3.11.6 Resultados esperados

- La comunidad marítima nacional reconoce la existencia de especies exóticas invasoras introducidas por las descargas de agua de lastre y los sedimentos de los buques, entendiendo que estas especies causan daños a la biodiversidad, a la economía y a la salud pública.

- Contar con el listado oficial de especies introducidas por el agua de lastre al territorio colombiano, junto con la identificación de las áreas afectadas, impactos causados y especies potencialmente invasoras con probabilidad de introducción en las aguas nacionales.

- Identificación y conocimiento de los impactos causados por las especies introducidas en el territorio nacional. Guías y protocolos desarrollados para el muestreo, la evaluación de riesgo, la identificación de impactos e implementación de planes y programas frente a las invasores procedentes del agua de lastre, áreas más vulnerables a la introducción de especies delimitadas, así como las que ya son afectadas por especies. De igual forma, se espera contar con la delimitación de zonas aptas para el deslastre, acuerdo con lo estipulado en el convenio internacional.

- Personal capacitado, entrenado y formado en diferentes áreas que apoyen el cumplimiento de las metas y objetivos trazados. Alianzas nacionales, regionales e internacionales consolidadas. Sistemas de intercambio de información creados, consolidados e implementados.

- Marco jurídico, político e institucional desarrollado, implementado y soportado en el ámbito nacional para la gestión del agua de lastre y los sedimentos.

- Prioridades de investigación o estudios identificadas en cada componente de la estrategia nacional, con planes de acción formulados que garanticen el desarrollo de las actividades para cada prioridad, de manera que se asegure y consolide la estrategia nacional.

- Definición de sistemas nacionales de monitoreo, seguimiento y evaluación relacionados con el manejo y gestión del agua de lastre en el territorio nacional.

- Mecanismos interstatales fortalecidos, estandarizados y disponibles para la prevención, erradicaron, control de especies invasoras por agua de lastre y sedimentos entre estados vecinos o con condiciones climáticas similares.

- Conocimiento amplio de términos, conceptos, ventajas e implicaciones de ratificar el instrumento internacional para la gestión de agua de lastre y los sedimentos en el territorio nacional.

- Identificación de áreas afectadas por las introducciones con planes de control implementados, controlando su dispersión y afectación hacia otras áreas.

- Aprovechamiento de la infraestructura instalada con sistemas de alertas tempranas implementadas para evitar la introducción
de nuevos invasiones o combatir con rápida y oportunidad los que lleguen.
- Planes de contingencia implementados para el control y erradicación de nuevas especies potencialmente invasoras.
- Marcos jurídicos nacionales revisados que permitan soportan un plan estratégico para implementar medidas de control y la posible adopción del convenio internacional para el manejo de agua de lastre.
- Programas de erradicación consolidados e implementados para la erradicación de especies invasoras transferidas por el agua de lastre y los sedimentos.
- Programas y planes establecidos y puestos en práctica que soporten las acciones de control de las especies introducidas por el agua de lastre y los sedimentos. Así como ampliación del conocimiento de las áreas afectadas por las descargas.
- Planes de gestión de agua de lastre específicos para cada puerto, elaborados e implementados de acuerdo con las condiciones particulares de cada área.
Dossier para el control y la gestión del agua de lastre y sedimentos de los buques en Colombia
Capítulo IV
Primeros avances, caso Colombia

Buques atracados, puerto de Cartagena. Al fondo Castillogrande.
Citar este capítulo como:
4.1 Fase inicial proyecto Agua de Lastre

Conforme con los estudios realizados por varios países en el ámbito global, en los cuales se indica que muchas especies de plantas, bacterias y animales introducidas por el agua de lastre de los buques generan impactos negativos en las poblaciones nativas y alteran el equilibrio ecológico, la Autoridad Maritima Nacional de Colombia, a través de sus centros de investigación científica marina, ha iniciado la caracterización de algunos de los puertos de mayor tráfico marítimo en el país.

Particularmente, desde el año 2002 Dimar, a través del Cioh, empezó a trabajar en el puerto de mayor tráfico internacional del país, como lo es Cartagena de Indias, y a partir de 2007 ha expandido las labores de investigación hacia los puertos de mayor interés comercial del Caribe colombiano. Estas primeras acciones han permitido el levantamiento de información base, que permite identificar la calidad del agua de lastre descargada en estos puertos nacionales.

La información recolectada hasta la fecha es punto de referencia para las autoridades portuarias y ambientales, que orienta los procedimientos a implementar, de manera que se controle y reduzca al mínimo el riesgo de introducción de organismos acuáticos y agentes patógenos no deseados. Esta información fundamenta el soporte técnico para empezar a estudiar y construir los mecanismos legales, jurídicos, políticos, institucionales y nacionales necesarios para implementar planes y programas de gestión del agua de lastre en el territorio nacional, conforme lo establece el Convenio.

Específicamente se ha estimado que en el puerto de Cartagena de Indias la calidad del agua no es adecuada para la toma de lastre y puede representar riesgo de contaminación a otros puertos internacionales, de no realizarse la gestión a bordo indicada por la OMI. En los estudios de la Bahía de Cartagena se han reportado registros de especies no identificadas en estudios anteriores, aproximadamente 100 nuevos reportes de especies fitoplanctónicas (Anexo I), además de la presencia de especies como Dinophysys caudata, Pseudoitzschia sp., Ceratium furca y Skeletonema costatum, consideradas por la Comisión Oceanográfica Intergubernamental (COI) como tóxicas. En la Tabla 4.1 se consignan algunas afectaciones sobre el medio y los seres humanos de especies de algas fitoplanctónicas reportadas en la Bahía de Cartagena. Los nuevos reportes sugieren posibles organismos introducidos o especies estacionales que no fueron identificadas en estudios previos. También fue posible la identificación de estructuras de resistencia tanto en el agua de lastre como en la bahía; por lo cual, a la hora de valorar el riesgo, es importante tener en cuenta aspectos como la densidad de individuos, para evitar transportarlos o recibirlos en el sistema cuando se deslastra el agua.

Al igual que con el fitoplancton, nuevos reportes de especies de zooplancton (Anexo II) han sido documentadas para la Bahía de Cartagena durante el desarrollo del proyecto Agua de Lastre. Esta información facilita la elaboración de listas de especies para empezar a establecer la composición de especies nativas de la bahía y, con la información tomada en los buques, poder evidenciar la presencia de nuevas especies transferidas por la actividad marítima, en este caso el agua de lastre.

En el agua de lastre de los buques evaluados se corroboraron condiciones ambientales adecuadas para el sostenimiento de comunidades biológicas dentro de los tanques. Asimismo fue posible identificar especies planctónicas como: Oithona setigera, Oithona hegolandica, Microstella sp., Diarthodes sp., Oculosetella sp, Corystoides chilensis, Parapagurus Diógenes, Sagitta mínima, Coscinodiscus wailesii, Coscinodiscus granii, Skeletonema costatum, Chaetoceros decipiens, Asterionellopsis glacialis, Ceratium vultur, Ceratium tripos, Dinophysys caudata, entre otras (Rondón et al., 2003; Gavilán et al., 2005; Suárez et al., 2007; Cioh, 2004, 2006, 2007;
<table>
<thead>
<tr>
<th>Especie</th>
<th>Descripción</th>
<th>Distribución</th>
<th>Época en la que se registró en Cartagena</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especie</td>
<td>Descripción</td>
<td>Distribución</td>
<td>Época en la que se registró en Cartagena</td>
<td>Referencia</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Especie</td>
<td>Descripción</td>
<td>Distribución</td>
<td>Época en la que se registró en Cartagena</td>
<td>Referencia</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Gonyaulax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diegensis</td>
<td>Gonyaulax polygramma está implicado en la muerte de fauna marina por el</td>
<td>Aguas templado-tropicales.</td>
<td>Transición.</td>
<td>Sidabutar et al. (2001).</td>
</tr>
<tr>
<td></td>
<td>floramiento excesivo y por tanto el agotamiento de oxígeno en el medio.</td>
<td>Australia, Belice, Corea, Estados Unidos, Hong Kong, Japón, México e Indonesia.</td>
<td>Lluvias.</td>
<td></td>
</tr>
<tr>
<td>poliedra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandrium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>catenella</td>
<td>Producen toxinas PSP.</td>
<td>Costa este y oeste de Norte América.</td>
<td>Lluvia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Producen toxinas PSP.</td>
<td></td>
<td></td>
<td>Fukuyo et al. (2003).</td>
</tr>
<tr>
<td>Pyrophacus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>por mariscos.</td>
<td>Australia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Produce floraciones en forma de grandes parches café verdosas.</td>
<td>Nueva Zelandia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especie</td>
<td>Descripción</td>
<td>Distribución</td>
<td>Época en la que se registró en Cartagena</td>
<td>Referencia</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Especie</td>
<td>Descripción</td>
<td>Distribución</td>
<td>Época en la que se registró en Cartagena</td>
<td>Referencia</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nitzschia seriata complex</td>
<td></td>
<td>Regiones de aguas frías. Australia, Rusia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetoceros convolutus</td>
<td>Es nociva para peces e invertebrados, en especial en sistemas de acuicultura intensos.</td>
<td>Cosmopolita.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2008). En algunos casos las especies no han sido reportadas para la bahía y en otros son consideradas como causantes de afectaciones en el medio ambiente y la salud humana.

En consecuencia, estos reportes evidencian el potencial riesgo de introducción de especies en la bahía y la generación de impactos sobre la misma. Adicionalmente con respecto a la calidad sanitaria del agua de lastre se constató que aproximadamente el 30 % de las embarcaciones monitoreadas sobrepasaron los niveles permisibles de descarga con respecto al microbió indicador *Escherichia coli* y el 11 % de Enterococos intestinales.

Por otro lado, en Puerto Bolívar se realizaron monitoreos a diez estaciones, distribuidas alrededor del muelle de carbón y de Bahía Portete, de marzo a noviembre de 2007, así como al agua de lastre de doce embarcaciones de tráfico internacional. Se observó que todas las variables fisicoquímicas estaban dentro de los rangos establecidos para el agua marina. De igual forma, las especies de zooplancton también se ubicaron dentro de las ya referidas por otros autores para la región (Anexo III). Sin embargo, con respecto a la calidad sanitaria del agua se halló que las estaciones ubicadas alrededor de Puerto Bolívar registraron niveles más elevados de patógenos, con relación a las ubicadas en Bahía Portete.

Se observó que el agua de lastre de algunos buques constituye una fuente adicional de contaminación para el área. Lo anterior se sustenta en que los reportes mostraron mayores concentraciones de parámetros, como los nutrientes con relación a las concentraciones reportadas para la bahía y el puerto. Además, el 75 % de los tanques sobrepasó el límite permitido de coliformes totales: el 16 % de *Escherichia coli*, el 8 % de Enterococos, ninguno reportó la presencia del *Vibrio cholerae* y solo una embarcación reportó niveles por encima de 300 UFC/100L de *Pseudomonas sp*. También fue posible comprobar que Puerto Bolívar no constituye fuente de riesgo de contaminación para puertos internacionales por actividades de lastração de agua. Por el contrario y dadas las cantidades de agua deslastrada en el puerto, esta área se considera altamente vulnerable a la introducción de especies.

4.2 Levantamiento de información en puertos y evaluación de la calidad del agua de lastre

El proyecto Agua de Lastre además de evaluar la calidad fisicoquímica, biológica y microbiológica de los tanques de lastre de algunos buques, también lo ha hecho en estaciones ubicadas en la Bahía de Cartagena, Bahía Portete y Puerto Bolívar (Figura 4.1). El estudio consideró llevar a cabo el monitoreo teniendo en cuenta los tres períodos característicos de la región (estación seca, transición y lluvias), en tal sentido, junto con información secundaria de las áreas seleccionadas, se pretendió conocer las condiciones ambientales de éstas.

Figura 4.1 Área de estudio, Bahía de Cartagena con la localización de las estaciones monitoreadas. Donde B=Boya.
4.2.1 Muestreo de parámetros físicoquímicos

La evaluación de parámetros físicoquímicos (oxígeno, demanda bioquímica de oxígeno, nutrientes, salinidad, turbidez y sólidos suspendidos totales) consideró la recolección en campo de muestras de agua a tres profundidades, mediante lanzamiento de una botella Niskin de 5 L. En campo, el contenido de las botellas fue reembasado en galones de 5 L, previamente marcados y preservados en hielo para su posterior procesamiento en laboratorio.

De igual forma, se registró la lectura de datos correspondientes a oxígeno disuelto (OD), pH, temperatura del agua, salinidad y turbidez, con sondas multiparamétricas WTW, Horiba, WPA, refractómetro y turbidímetro. Adicionalmente, se registró información de la identificación de la muestra, hora de muestreo y condiciones meteorológicas en el momento de la toma (Figura 4.2).

4.2.2 Muestreo de parámetros biológicos

Para la toma de muestras se realizó un arrastre horizontal durante 1 minuto a lo largo de cada estación. En el caso del componente fitoplanctónico se utilizó una red de 25 μm y para el zooplancton una de 55 μm. Estas redes tienen un diseño cónico con un diámetro máximo de boca de 25 cm y longitud de 80 cm, en el extremo posterior de la red lleva adaptado un sistema colector o concentrador de la muestra filtrada, que entra a través de la boca hasta dicho dispositivo.

Estas redes se dispusieron a cada lado de la popa de la lancha (Figura 4.3). Concluido el arrastre se procedió al marcado y preservación de las muestras con Formalina al 4 %, neutralizada con Bórax para su posterior análisis en laboratorio.

Las muestras de clorofila se tomaron con botella Niskin en cada estación, las cuales fueron reenvasadas en galones de 5 L, refrigeradas y marcadas para su posterior análisis en el laboratorio.

4.2.3 Muestreo de parámetros microbiológicos

Estas muestras se tomaron en diez estaciones a tres profundidades con botellas Niski, el agua se reenvasó a botellas previamente esterilizadas y se refrigeraron para posterior análisis en laboratorio.
4.2.4 Muestreo en tanques de lastre de buques

Teniendo en cuenta la dificultad para la toma de las muestras en los tanques de lastre de los buques, fue necesario emplear diferentes técnicas de muestreo. Se tuvieron en cuenta varios criterios para seleccionar el método de muestreo a usar:

a) Identificación de métodos seguros y conformes con las operaciones de los buques.
b) Selección de los buques. Se escogieron los buques con rutas de mayor frecuencia que visitaron el puerto de Cartagena y todos los buques que estuvieron en Puerto Bolívar durante las campañas de campo.
c) Acceso a los tanques de lastre, esto depende en gran parte del diseño del buque y del tanque. En términos generales, el acceso a los tanques de lastre a través de la apertura de escotillas (manholes) ha sido el método de muestreo más recomendado (Gollasch, 2003). Sin embargo, durante el desarrollo del proyecto en Cartagena, el bombeo en cubierta fue también predominante a la hora de la toma de la muestra, en tanto que en Puerto Bolívar, a través de las manholes o bodegas se tomaron las muestras. En la Tabla 4.11 se describen los diferentes tipos de acceso a los tanques y métodos empleados para la toma de muestras.
d) El volumen de descarga. Se evitó el muestreo en los tanques de lastre de los buques que contenían una mezcla de agua de diferentes regiones, para centrarse en tanques con agua de lastre de una sola área de origen conocido. Cabe mencionar que el tipo de buque que con mayor frecuencia arribó al puerto de Cartagena fue de tipo portacarreteros. Sin embargo, por facilidad de acceso, los seleccionados para la toma de muestra fueron los tipo tanqueros o cargueros que venían lastreados a tomar carga al puerto. En Puerto Bolívar, por el contrario, predominaron los cargueros con volúmenes de lastre notablemente significativos.

Es importante aclarar que varios estudios han concluido que ningún método hasta ahora implementado para evaluación y monitoreo de especies dañinas transportadas en el agua de lastre es adecuado para muestrear todos los grupos de organismos en todos los barcos (Gollasch, 2006; David y Percovi, 2003; Hewitt et al., 2003; Dodgshun, 2003; Gollasch et al., 2003; Sutton et al., 1998), se sugiere por lo tanto el uso de más de un método y diferentes equipos para conseguir mejores resultados.
Dossier para el control y la gestión del agua de lastre y sedimentos de los buques en Colombia

Tabla 4. Técnicas y equipos de muestreo utilizados para el monitoreo de agua en los tanques de lastre de buques de tráfico internacional que arribaron al puerto de Cartagena (Fuente: Cañón et al., 2008a).

<table>
<thead>
<tr>
<th>Tipo de acceso</th>
<th>Tipo de muestreo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Manholes (puertas de acceso a los tanques).</td>
<td>Redes, botellas, baldes.</td>
<td>El muestreo se realizó a través de las bocas de los tanques, utilizando una botella Niski de 5 L y redes de plancton (fito y zooplancton) ya que de esta forma se tiene acceso directo al tanque. Fue raramente posible muestrear de esta manera (en Cartagena), debido a la baja disponibilidad de buques con este sistema o porque dichas bocas se encontraban ubicadas por debajo de la carga de las naves, situación que implica tiempo y costos por parte de la tripulación para la toma de la muestra y que influye también en la cantidad de muestras tomadas a través de este sistema. Este tipo de muestreo predominó en Puerto Bolivar.</td>
</tr>
<tr>
<td>b) Overflow.</td>
<td>Toma directa.</td>
<td>Esta técnica es útil para valorar la descarga, así como la biota presente descargada en el agua de lastre que es la principal preocupación para las autoridades del Estado Rector del Puerto.</td>
</tr>
<tr>
<td>c) Tuberías de acceso.</td>
<td>Bombas de mano, tubos, bombas eléctricas, toma directa.</td>
<td>En este caso, fue utilizada una bomba de mano o eléctrica, a las cuales fue acoplada una manguera que se introdujo a los tanques de lastre a través de las tuberías de acceso. En los buques estas tuberías se utilizan para medir el nivel del agua en un tanque y para conectar el tanque con una cubierta superior.</td>
</tr>
<tr>
<td>Tipo de acceso</td>
<td>Tipo de muestreo</td>
<td>Descripción</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>d) Tuberías de acceso.</td>
<td>Toma directa con baldes, redes, botellas.</td>
<td>Este método require equipo diseñado especialmente para acceder al tanque de lastre a través de tuberías estrechas. En este caso se utilizó un dispositivo de acero inoxidable de 15 cm de largo y 0.5 cm de diámetro o mangueras de ¾ de pulgada adaptadas a bombas manuales. Los estudios futuros del agua de lastre deben considerar que el muestreo vía las tuberías de acceso es inferior con respecto a otras técnicas de muestreo. Sin embargo, en algunos casos las bocas no pueden ser abiertas debido por ejemplo a la sobrecarga de la carga y en estos casos el muestreo a través de los tubos de acceso pueden ser la única opción (Sutton et al., 1998).</td>
</tr>
<tr>
<td>e) Descarga directa al mar.</td>
<td></td>
<td>Durante el proceso de cargue y descargue de la nave es importante mantener la estabilidad del buque, por esta razón cuando se presentó descarga de aguas de lastre al medio a través de la toma directa se accedió a la muestra de aguas para el análisis.</td>
</tr>
</tbody>
</table>

Una vez transportadas las muestras al laboratorio se procedió al análisis de acuerdo con las metodologías implementadas y validadas (Tabla 4.III).

4.3 Resultados obtenidos

4.3.1 Puerto de Cartagena

La Bahía de Cartagena se encuentra ubicada entre las coordenadas 10°16’ y 10°26’ de latitud Norte y 75°30’ y 75°35’ de longitud Oeste, con una extensión meridional de 16 km y una zonal de 9 km. El área de espejo de agua es de 82.6 km², con una profundidad promedio de 16 m y una máxima alrededor de los 30 m (Loninet al. 2004).

La bahía conecta con el Mar Caribe con dos bocas principales. Al norte Bocagrande, con una escollera con una profundidad entre 0.6 y 2.1 m y un ancho de 2 km. Al sur Boca chica, compuesta por tres estrechos, siendo
Tabla 4.3. Métodos implementados por los laboratorios del CIoh para el análisis de las muestras.

<table>
<thead>
<tr>
<th>Productos o material a ensayar</th>
<th>Tipo de ensayo propiedades medibles, rango de medida</th>
<th>Especificaciones, norma o técnica utilizada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amonio, 0.1 hasta 0.8 mg/L.</td>
<td>Método colorimétrico de azul de Indofenol y posterior lectura de éste por espectrofotometría MPT–Q. 13. Ref. Parsons et al., 1989.</td>
<td></td>
</tr>
<tr>
<td>Nitrito, 0.02 hasta 0.5 mg/L.</td>
<td>Método colorimétrico, coloración de las muestras con soluciones con sulfanilamida y diclorhidrato de N-(1-naftil) etilendiamina y posterior lectura de esta por espectrofotometría. MPT–Q. 15. Ref. Parsons et al., 1989. Pp. 7-9.</td>
<td></td>
</tr>
<tr>
<td>Ortofosfatos, 0.02 hasta 0.5 mg/L.</td>
<td>Método colorimétrico en el cual se forma un complejo y la subsiguiente reducción a un complejo azul, cuya intensidad se mide espectrofotométricamente. MPT–Q. 15. Ref. Parsons et al., 1989. Pp. 22-25.</td>
<td></td>
</tr>
</tbody>
</table>
actualmente el principal canal de navegación con una profundidad máxima de 30 m y un ancho de 500 m. Al sur de la bahía se encuentra el Canal del Dique donde desembocan las aguas dulces del río Magdalena, con un caudal entre 55 y 300 m³/s, lo cual hace que la bahía se clasifique como un estuario. Esta condición hace también que se presente una fuerte estratificación en la columna de agua que influye en la dinámica de la bahía, especialmente en la época húmeda, entre agosto y noviembre, caracterizada por vientos débiles (3 m/s) y variables, así como lluvias asociadas a un mayor caudal en el Canal del Dique. La otra época corresponde a la seca, de diciembre a abril, en la cual soplan los vientos Alisios del Norte más fuertes (8 m³/s) y en dirección estable, asociada con menor caudal en el Canal del Dique y, por lo tanto, con una menor estratificación en las aguas de la bahía.

4.3.1.1 Información base fisicoquímica, biológica y microbiológica de la bahía

El estudio desarrollado deja ver la estacionalidad de las características ambientales presenten en un cuerpo de agua estuario como lo es la Bahía de Cartagena. De igual modo fue posible evidenciar la baja calidad de las aguas de la bahía, desde el punto de vista microbiológico, biológico y fisicoquímico (Cañón et al., 2005, 2008a; Gavilán et al., 2005; Rondón et al., 2003) de acuerdo con las normas Decreto 1594, la EPA, la Norma Europea y las resoluciones OMI, concernientes al tratamiento del agua de lastre.

Unos de los parámetros que evidenció la baja calidad de las aguas fue el pH. Por ejemplo, este superó el límite admisible para la preservación de flora y fauna según el Decreto 1594 (6.5 a 8.5 en aguas estuarinas). Este parámetro varió entre 7.52 y 8.72 unidades observándose los valores más altos en las tres profundidades durante la temporada de lluvias, seguidos por la época seca y reportándose los más bajos para la temporada de transición (Cañón et al., 2008a) (Figura 4.4).

Adicionalmente, el oxígeno reportó valores bajos en las capas del medio y fondo entre 2 y 5 mg/L, indicando de esta forma también afectación para la flora y fauna de fondo presente en la bahía. Lo anterior debido a que estas bajas concentraciones pueden generar eventos de anoxia y eutrofización del sistema (Figura 4.5). Esta afirmación se sustenta en que las concentraciones también reportadas de nutrientes (figuras 4.6 y 4.7) (nitratos, amonio y ortofosfatos) y clorofila-a (Figura 4.8) están definidos como valores de referencia característicos de aguas ligeramente tróficas, muy eutróficas e hipertróficas.

Sumado a lo anterior la calidad microbiológica de las aguas durante todo el período de estudio evidenció contaminación de este tipo sobreponiendo los límites admisibles según la OMI, EPA y la norma europea. Partiendo de los resultados obtenidos se recomienda no las- trar en la Bahía de Cartagena, con el fin de evitar la transferencia de patógenos a puertos internacionales.

Como resultado de la identificación taxonómica y la revisión bibliográfica para este cuerpo de agua se consolidó el registro de 422 especies de fitoplancton presentes en la Bahía de Cartagena, de las cuales, como ya se indicó, el proyecto durante su ejecución consignó aproximadamente 100 nuevos reportes (Anexo I), que pueden constituir la estructura nativa del área o por el contrario algunos de estos ser posiblemente introducidos por diferentes vectores, entre estos el agua de lastre. Cabe mencionar, que algunas de estas especies han sido reportadas como causantes de impactos negativos sobre los recursos, ecosistemas, salud y economía de las zonas costeras en el ámbito mundial (Tabla 4.1).

De igual modo, 97 taxas zooplanctónicas (Anexo II), de las cuales la especie Corynoides chilensis, según su biogeografía indican que es específica del Atlántico Sur. Lo anterior, puede sugerir el riesgo de posible
Figura 4.4 Variación espacio-temporal del pH en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).
Figura 4.5 Variación espacio-temporal de oxígeno disuelto (mg/L) en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres t...
Figura 4.6 Variación espacio-temporal de la concentración de nitratos (mg/L) en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).
Figura 4.7 Variación espacio-temporal de la concentración de ortofosfatos (mg/L) en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).
Figura 4.8 Variación espacio-temporal de concentración de sustancias que absorben en la misma longitud de onda de la clorofila-a (mg/L) en la Bahía de Cartagena. En la figura la línea roja representa la época seca, la verde indica la época de transición y la azul identifica la época de lluvias. A continuación de cada gráfico se ilustran los contornos para cada capa de la columna de agua durante las tres temporadas climáticas (Cañón et al., 2008a).
introducción de esta especie con poblaciones establecidas en la Bahía de Cartagena debido a que durante el estudio se identificó su presencia en la mayoría de los puntos y épocas de muestreo (Cioh, 2006).

4.3.1.2 Calidad del agua de lastre de algunos buques en la Bahía de Cartagena

En Cartagena, entre el 2002 y el 2006, se evaluó la calidad biológica, microbiológica y físicoquímica del agua de lastre de 130 tanques de agua de lastre, de conformidad con la regla D2 del instrumento internacional aprobado por la OMI para la gestión de agua y sedimentos de lastre. Debido a que la regla en mención no considera la calidad físicoquímica, se tomaron como referencia a otras normas para evaluar dicho aspecto, puesto que muchos parámetros físicoquímicos, en algunos casos, superaron las concentraciones halladas en la bahía constituíéndose en una fuente adicional de contaminación para el medio.

En el caso de los nutrientes, los ortofosfatos (27 %) y el amonio (33 %) de los tanques analizados superaron el límite admisible (0.05 mg/L) para aguas de uso pesquero según la norma cubana NC25 (Figura 4.9).

Considerando las directrices voluntarias de la OMI, se evidenció en parámetros como la salinidad la poca gestión a bordo en términos de intercambio de lastre en mar abierto. Solamente el 27 % de los tanques analizados registraron agua con salinidades superiores al 32 % (Figura 4.10); en los demás las condiciones de la bahía no tendrían mayor problema en no actuar como agente biocida sobre los posibles invasores, debido a que las condiciones mínimas necesarias para la sobrevivencia de los organismos fueron corroboradas en los tanques y que no difieren mucho de la Bahía de Cartagena. Además de la salinidad, la clorofila, temperatura, oxígeno y el pH también garantizan la viabilidad de los organismos transferidos por el agua de lastre.

Adicionalmente, se encontró que el 23 % de los tanques evaluados en cuanto a los sólidos suspendidos totales sobrepasa el límite normal para los organismos marinos dado que una alta tasa de deposición de sólidos se considera dañina para la biota acuática, puesto que pueden enterrar a organismos sedentarios como los corales (Aguirre et al., 2008) y afectar procesos fisiológicos de los mismos como la fotosíntesis de las algas que están en simbiosis con éstos (Figura 4.10f).

Para evaluar la gestión del agua de lastre, la OMI consignó dentro de los anexos del nuevo instrumento internacional a tres microorganismos como indicadores de la calidad sanitaria del agua de lastre descargada (numeral 2.2.2.4. Estándares de descarga. Capítulo II). En

![Figura 4.9 Tanques de lastre que sobrepasaron el límite admisible de ortofosfatos y amonio para aguas de uso pesquero.](image-url)
tal sentido fue posible evidenciar que el 22 % de los tanques de buques no cumplen con los estándares de descarga para el microbio indicador *Escherichia coli*, consignados en la mencionada regla (Figura 4.11). Por lo tanto, el riesgo de afectación sobre la salud humana también es evidente en este cuerpo de agua, constituyéndose así en una fuente adicional de contaminación microbiológica para la bahía.

Adicionalmente, el 11 % sobrepasa el límite establecido por la OMI (100 UFC/100 ml) para Enterococos y el 18 % el límite establecido por la EPA (>35 UFC/100 ml). Lo que evidencia,
como ya se mencionó, fuentes adicionales de contaminación para la bahía y sugiere la necesidad urgente de establecer procedimientos de control que eviten afectaciones sobre la salud y ecosistemas de la bahía por la presencia de patógenos transferidos por el agua de lastre.

En cuanto a la identificación de organismos se evidenció la presencia de organismos fitoplanctónicos y zooplanctónicos. Dichas especies fueron comunes con las encontradas en la bahía en los reportes generados para el Caribe colombiano, sin embargo, algunas no lo fueron. Dentro de los especies no reportadas para la Bahía de Cartagena e identificadas en los tanques de lastre se encuentran: Chaetoceros messanensis, Chaetoceros glandazzi, Chaetoceros tortissimus, Odontella aurita, Hemidiscus cuneiformes, Ditylum brightwellii, Paralia sulftata, Planctonella sol, Asterionella glacialis, Fragilariaopsis dolius y Dictyocha polyaeites. De las especies de zooplancton: Pelagodiscus sp, Lucifer typus (Ron-dón et al., 2003; Gavilán et al., 2005; Suárez et al., 2007; CIOH, 2004; 2006; 2007; 2008).

4.3.1.3 Mapa preliminar de evaluación de riesgo de la Bahía de Cartagena por la carga o descarga de agua de lastre

Con base en la información tomada en campo, bases de datos secundarias y las herramientas de modelación desarrolladas por el Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH), se generó el mapa preliminar de evaluación de riesgo por introducción de especies a través del vector aguas de lastre.

La modelación dejó ver que los campos hidrodinámicos hicieron que el contaminante se dirigiera en dirección suroeste del punto del derrame, ocupando el sector sur de la bahía. En la Figura 4.1.2 se observa que en tres días de diferencia el derrame simulado presenta trayectorias opuestas. Si bien estos resultados no deben entenderse como el comportamiento exacto de los contaminantes reales que evacua el emisario ubicado en esta posición debido a las características tan diferentes entre las sustancias (hidrocarburos vs. organismos patógenos) así como en la manera como se

Figura 4.1.2 Mapa preliminar del análisis de riesgo en la Bahía de Cartagena que ilustra las áreas más afectadas por la descarga de sustancias contaminantes.
presenta la contaminación (derrame instan-
táneo vs. derrame continuado), éste se de-
muestra que por la variabilidad de los campos
hidrodinámicos de la bahía y por las carac-
terísticas físicas de la misma, la sustancia con-
taminante que se introduzca en un punto
determinado puede ocupar en el orden de los
días casi cualquier lugar de la bahía.

Se puede entender entonces que los
procesos hidrodinámicos que gobiernan el
comportamiento de las aguas en la Bahía de
Cartagena, si bien han logrado modelarse
satisfactoriamente, son muy complejos. Ello
teniendo en cuenta las variaciones en cortas
escalas de tiempo por las diferentes fuerzas
que interactúan, incluso dentro de las mismas
épocas climáticas, siendo posible encontrar
flujos superficiales en direcciones contrarias a
los flujos del fondo, diferentes niveles de
estratificación de las aguas y variabilidad en los
campos hidrodinámicos.

Con base en los resultados reportados,
se recomienda por la variabilidad de los cam-
pos hidrodinámicos que se prohíba cualquier
tipo de toma o descarga de agua de lastre al
interior de la Bahía de Cartagena, con el fin de
evitar la introducción o exportación de organ-
ismos invasores y patógenos.

4.3.2 Puerto Bolívar y Bahía Portete

Puerto Bolívar está ubicado en el sec-
tor noreste del Caribe colombiano, al costado
ocidental de Bahía Portete, en la Península de
La Guajira, aproximadamente entre los 12°24'
de latitud Norte y 71°52' y longitudinal Oeste
(UMI, 2006) (Figura 4.13). Bahía Portete se
caracteriza por presentar praderas de vegeta-
ción marina, manglares y sustratos fangosos.
De igual forma, presenta áreas de agua clara
con zonas de coral y praderas de vegetación
marina asociadas, así como algunas áreas roco-
sas con fondo arenoso; playas arenosas y zonas
de acantilados rocosos desprovistos de man-
glares y con pocas áreas cubiertas de vegeta-
ción marina (Garzón-Ferreira, 1989).

El área está influenciada por vientos
que alcanzan velocidades promedio cercanas a
los 10 km/h. Los vientos en su mayor parte
provienen del cuadrante norte-este y en menor
proporción del norte. La mayor parte de las
lluvias (más del 60 %) cae en los meses de
septiembre, octubre y noviembre. Alrededor
de abril o mayo se sitúa un segundo periodo de
lluvias, mucho menos importante que el
anterior, son comunes aguaceros entre 80 y
181 mm en 24 horas, en contraste con periodos
de sequía de seis meses. Los meses más cálidos
son: junio, julio, agosto y septiembre, con una
temperatura máxima mensual multianual de
38.6°C. Los meses más frescos son diciembre,
enero, febrero y marzo, con una temperatura
mínima mensual multianual de 19.4°C. La
temperatura media mensual multianual es de
28.5°C (UMI, 2006).

Las mareas son variadas, se presentan
dos ciclos de marea por día lunar, con dos nive-
les de aguas altas desiguales y dos de aguas
bajas también desiguales. Las amplitudes máxi-
mas y media de la marea oscilan entre 0.46 y
0.14 m, respectivamente (Harris et al., 1979).

4.3.2.1 Información base fisicoquímica, bioló-
gica y microbiológica de Bahía Portete

En esta área la mayoría de los pará-
metros analizados se encuentran dentro de los
valores típicos de las aguas marinas, así como
dentro de los límites permisibles de diferentes
normas para uso recreativo, pesquero y pre-
servación de flora y fauna.

En el área el aporte de nutrientes se
realiza por diversas fuentes, entre las cuales se
pueden mencionar el aporte por aguas de
surgencia durante la permanencia de los
viientos Alisos en la zona, en la temporada
seca, y por procesos de escorrentía continen-
tal, en temporada de lluvias. Los nitratos y
ortofosfatos se encuentran dentro de los
valores permitidos de calidad de aguas para
uso pesquero (0.03 mg/L NH₃ y 0.05 NO₃, PO₄)
(Figura 4.14). Lo anterior sugiere que la elevada
Figura 4.13 Área de estudio. Puerto Bolívar y Bahía Portete con estaciones de muestreo.

Figura 4.14 Distribución espacio-temporal promedio de la concentración de nutrientes (nitritos, amonio y ortofosfatos) en Bahía Portete y Puerto Bolívar, durante 2007. Donde a) Corresponde a la variación estacional de los nutrientes y b) Distribución espacial promedio de amonio en el área de estudio (Cañón et al., 2008b).
disponibilidad de estos elementos se asocia a los procesos de generación in situ (Cañón et al., 2008a).

Los demás parámetros fisicoquímicos estudiados en la bahía y el puerto se encuentran dentro de los rangos establecidos para las aguas marinas. El oxígeno reportó valores entre 0.98 y 10.23 mg/L, con promedios de 5.54 mg/L, observándose pocas diferencias entre la superficie y el fondo. De igual modo, el pH en el área varió entre 7.82 y 8.68, con promedios de 8.35, valores establecidos dentro del rango normal para aguas marinas y dentro de los valores permisibles para la preservación de flora y fauna según el Decreto 1594 de 1984. La temperatura del agua en la zona varió entre 23.30 y 30.0 °C y la salinidad entre 26 y 37.7.

Lo anterior evidencia la presencia durante marzo de aguas frías y con mayor salinidad, producto del evento de afloramiento durante la temporada seca, y de aguas más cálidas y menos salinas durante el inicio y presencia de la época de lluvias. También se observó la presencia de aguas más frías y saladas en las estaciones cercanas al mar, que las ubicadas en el interior de la bahía (Figura 4.15).

En relación con el componente biológico fue posible identificar la presencia de 20 especies, 15 larvas, 2 huevos y 7 morfotipos (Anexo III), todas reportadas para esta área. De modo que en la evaluación realizada no se encontraron registros de especies no reportadas para la bahía, a pesar de los volúmenes de descarga que sobre este puerto se han realizado, por lo menos en los grupos evaluados (a nivel de plancton). Es importante ampliar el estudio a otros grupos taxonómicos de bentos y especies de macroinvertebrados.

En términos de calidad sanitaria del agua, esta zona no reporta niveles críticos de contaminación. En cuanto al microbio indicador Escherichia coli, pudo comprobarse solamente en el área norte de Bahía Portete y en algunas estaciones cercanas al puerto niveles por arriba del límite admisible, según la norma OMI 2004 (250 UFC/100 mL); sin embargo, estos niveles no son comparables con los reportados para Cartagena (Figura 4.16) y el criterio de la OMI es bastante exigente. Por lo anterior, se asume que la calidad sanitaria del agua con respecto a este indicador es buena.

El otro indicador microbiológico considerado por la regla D2 del Convenio de la OMI del 2004, los Enterococos intestinales, reportaron valores por debajo del límite permitido para los buques, de modo que en términos de este parámetro Puerto Bolívar no reporta niveles de contaminación (Figura 4.17), ni riesgo de afectación por enfermedades gastro-intestinales en la población que están en contacto con las aguas de esta bahía. Considerando que la norma OMI, no es aplicada para ambientes naturales y los niveles encontrados están por debajo de este referente, la calidad sanitaria del agua con respecto a Enterococos intestinales permite evidenciar un área de condiciones sanitarias buenas.

Según el criterio establecido por la EPA (Aguirre et al., 2008), solamente una estación en la época de lluvias sobrepasa el límite (>35 UFC/100 ml), con 83 UFC/100 mL.

Durante el presente estudio no se reportó la presencia de Vibrio cholerae en 100 mL de agua analizada en las estaciones de muestreo de Bahía Portete. Por tanto y de acuerdo con los parámetros establecidos por la OMI (2004), la bahía no reporta la presencia de este patógeno. Por el contrario fueron reportadas otras especies como Vibrio alginolyticus y Vibrio fluvialis, que son especies más halotolerantes y por tanto, más abundantes en el agua de mar, muy comunes en el hábitat marino (Gutiérrez y García 1997).

4.3.2.2 Calidad del agua de lastre de algunos buques en Puerto Bolívar

En Puerto Bolívar fue posible evidenciar que el agua de lastre reporta valores más altos que los del medio natural (Figura 4.18) de
Figura 4.15 Distribución espacio-temporal de la temperatura y la salinidad en Puerto Bolívar y Bahía Portete. Donde: a) Temperatura época seca; b) Temperatura época lluvias; c) Salinidad época seca y d) Salinidad época lluvias (Cañón et al., 2008b).
Figura 4.16 Concentración de *E. coli* en Puerto Bolívar durante el año 2007. a) Variación estacional del parámetro, donde, MBP: Muelle Puerto Bolívar; B11: boyas 11; B14: boyas 14; BAL: última baliza; NAC: Norte Área de Cuarentena; AC: Área de Cuarentena; AFO: Área de Fondeo; PIS: Punta Ishep; CBP: Centro Bahía Portete; B12: boyas 12. b) Promedios de distribución espacial (Cañón et al., 2008b).

Figura 4.18 Tanques de lastre que sobrepasaron el límite admisible de ortofosfatos, nitratos y amonio para aguas de uso pesquero y además superaron las concentraciones reportadas en Bahía Portete.
nutrientes. Los parámetros que sobrepasaron dichos valores fueron los ortofosfatos (50%), amonio (40%) y nitritos (7%). La variación de ortofosfatos osciló entre 0.004 y 1.209 mg/L, los nitritos entre 0.0005 y 0.251 mg/L, los nitratos entre 0.0003 y 0.0348 y el amonio entre 0.0038 y 0.125 mg/L.

En cuanto a los demás parámetros físico-químicos se observó que la salinidad registró variaciones entre 15 y 36.5. Lo anterior evidencia que el 25% de los tanques analizados (8) no realizó el cambio de agua de lastre de acuerdo con las recomendaciones de la OMI.

El pH osciló entre 7.07 y 8.54, estos valores se encuentran dentro de los establecidos para aguas marinas. De igual forma y de acuerdo con el Decreto 1594 estos valores no afectan la preservación de la flora y la fauna. En cuanto al OD se reportaron concentraciones entre 2.8 y 13.6 mg/L. La temperatura registró valores entre 21.4 ºC y 32.5 ºC, condiciones poco extremas para los organismos presentes en los tanques. En suma puede indicarse que las condiciones físicoquímicas (Figura 4.19) en los tanques son adecuadas para el normal desarrollo y sostenimiento de organismos biológicos. Estas variables no son limitantes para los organismos transportados en los tanques.

Concentraciones de clorofila-a también fueron encontradas en la mayoría de los tanques analizados. Esta condición es indicadora de la presencia de materia orgánica viva en los tanque de lastre. De tal forma se corrobora la presencia de especies de fitoplancton vivas, con el consecuente sostenimiento de comunidades zooplanctónicas.

La turbidez y los sólidos suspendidos totales fueron parámetros también analizados en los tanques de lastre, los resultados dejan ver que picos altos de sólidos o turbidez responden a picos altos de concentraciones de clorofila-a (Figura 4.20).

De acuerdo con los estándares establecidos por OMI 2004, en cuanto a los valores permisibles para establecer el control de descarga de aguas de lastre, se consideró que los resultados encontrados en algunos tanques de lastre constituyen una fuente adicional de contaminación para Puerto Bolívar. Para el caso del microbio indicador Escherichia coli, el 16% de los tanques analizados sobrepasan el límite establecido por la regla D2 (Figura 4.21).

En cuanto a la concentración de Enterococos intestinales, se encontraron tres tanques que sobrepasan el valor establecido tanto por OMI como por EPA, de manera que se evidencia la afectación al área, debido a que en las estaciones estudiadas no se reportan estas concentraciones. De manera favorable al igual
que en las estaciones estudiadas, no se registró la presencia de *Vibrio cholerae* en los tanques de los buques.

Otros parámetros estudiados en los tanques analizados fueron la identificación de especies planctónicas. De éstos fue posible evidenciar que las especies halladas se encuentran dentro de los registros reportados por otros autores para la región. Sin embargo, el número de organismos vivos supera el valor estipulado en la regla D2 del Convenio (Anexo IV). Lo anterior, evidencia la poca gestión de algunos buques frente a las indicaciones de recambio del agua en mar abierto. Es importante continuar con los estudios que permitan establecer la introducción de organismos indeseables, considerando, la frecuencia, origen y volumen de descarga de agua de lastre en el área.

![Microorganismos indicadores](image)

Figura 4.21 Concentraciones de los microbios indicadores *Escherichia coli* (puntos rojos) y enterococos intestinales (cuadrados azules) (UFC/100 ml), reportadas en los tanques de lastre en Puerto Bolívar.

4.3.3 Identificación de origen y destino del agua de lastre para algunos puertos colombianos, de acuerdo con la información suministrada en el reporte de agua de lastre del Anexo A de la Resolución A 868 (20)-OMI

Desde 1998 las Directrices internacionales para impedir la introducción de organismos acuáticos y agentes patógenos indeseados, que pueda contener el agua de lastre y en los sedimentos descargados por los buques recomiendan que se proceda con cuidado a cargar el agua de lastre para asegurar que se carga a bordo únicamente agua limpia y sedimentos limpios. Cuando no fuera posible descargar el agua de lastre, su sustitución en alta mar ofrece un medio para limitar la introducción de especies no deseadas. Las aguas oceánicas superficiales contienen pocos organismos y los existentes no es probable que se adapten fácilmente a las nuevas aguas costeras o aguas dulces (OMI, 1998).

En este sentido se ha implementado, de forma voluntaria, un plan de gestión de aguas de lastre a bordo de las naves, de manera que cada operación de deslastrado queda consignada en el formato “Anexo I de la Resolución A868(20) (en adelante Anexo A868)”, el cual ha sido tomado como referencia por las autoridades portuarias y administradores de los puertos para verificar las acciones implementadas por los buques.

En Colombia, a través de las capitanías de puertos se ha venido solicitando a los capitanes de los buques el Anexo A868 de registro con la consignación de las operaciones de deslastrado realizadas por la nave. De esta manera se logra consolidar información de las capitanías de puerto de Puerto Bolívar, Santa Marta, Cartagena y Turbo, en la aplicación ‘Lastre DB’, desarrollada en el lenguaje Java (Figura 4.22), la cual puede ser ejecutada en sistemas Linux, Unix o MacOs por su característica de multiplataforma. Consecuentemente, el anterior se realiza entonces un aporte adicional a los objetivos plateado por la Asociación GoBallast, específicamente en el desarrollo de un sistema electrónico digital que permita el intercambio de información, a nivel nacional, regional y global relacionado con la gestión a bordo de los buques que visitan puertos nacionales y consignado dentro del Anexo A868.
Es importante indicar que este aplicativo puede ser implementado por los países de la región para promover estudios sobre la evaluación de riesgo del agua de lastre en puertos marítimos de acuerdo con las metodologías implementadas por OMI y la información proporcionada por dicho reporte (Globallast, 2003; Mallmann y Asmus, 2006).

De forma general, se puede indicar que los buques que arriban a Puerto Bolívar, proceden de aproximadamente 55 lugares diferentes del mundo, siendo Europa, América del Norte, Centroamérica, Suramérica e Israel los lugares de mayor procedencia. En este puerto, se reportaron cantidades de agua deslastrada que superaron los 90000 m³ (Figura 4.23). El 75 % de naves reportaron haber realizado deslastrado de sus tanques en el puerto, previo intercambio del agua de origen en mar abierto.

Cabe mencionar que no todos los buques consignaron información sobre la procedencia de las aguas descargadas en Puerto Bolívar. Por lo anterior, se sugiere promover en los puertos nacionales, iniciativas que exijan este Anexo A868 de gestión a todos los buques que arriban al territorio nacional, ya que proporcionar información sobre origen, frecuencia, volúmenes de descarga de agua de lastre, gestión a bordo y datos sobre si el puerto es donador o receptor de agua de lastre. Dicha información es de gran utilidad para evaluar el
riesgo de introducciones de especies y verificar si a través del intercambio se disminuye el impacto de las aguas descargadas en el puerto. Es preciso indicar que este reporte corresponde solamente al 17.5 % del total de arribos entre el 2004 y el 2006, de manera que con solamente esta información se puede establecer la vulnerabilidad de esta área frente a la introducción de especies transferidas por el agua de lastre, de no aplicarse las medidas de control recomendadas por OMI.

![Gráfico de Puerto Bolívar (Colombia)](image)

Figura 4.23 Volúmenes de aguas de lastre descargas en Puerto Bolívar, según información reportada en el Formato I de la Resolución A 868 (20).

En Santa Marta se reportaron 705 arribos en el año 2004, 648 en el 2005 y 499 en el primer semestre de 2006. Del total de arribos fueron remitidos 188 formatos de gestión de aguas de lastre, estos correspondieron únicamente al 10 % del total de naves, que arribaron a Santa Marta en las fechas indicadas. De este reporte, solamente 117 moto-naves informaron haber deslastrado aguas en Prodeco y Drummon, principalmente. En su mayoría, dicha operación corresponde a buques tipo carguero (Figura 4.24). En consecuencia los buques tipo carguero, serían identificados en este puerto como los posibles transportadores de especies no nativas con alta probabilidad de establecimiento de estas. Lo anterior, teniendo en cuenta los altos volúmenes de descarga que éstos manejan. Cabe mencionar que estos buques reportan intercambio en 57 puntos diferentes del Atlántico Norte y el Mar Caribe.

Igualmente, se observó mayor reporte de deslastre en el 2006 con respecto al 2004, predominando descargas entre 20000 y 40000 m³ de agua.

Adicionalmente, el análisis del Anexo A868 indicó que el agua de lastre procedía de 59 lugares diferentes del mundo, ubicados en Estados Unidos, Europa, Asia, el Caribe y el Pacífico. De estos destinos, un buque visitó siete veces el puerto reportando deslastre de agua en promedio de 2075 m³, sin haber realizado el intercambio en mar abierto. La procedencia del agua corresponde al Puerto de Las Mareas, ubicado en Puerto Rico. Por lo anterior, es importante ampliar el estudio a la evaluación de riesgo considerando, el volumen del agua de lastre descargado, la frecuencia de descarga y origen, así como la gestión a bordo de las naves procedentes de este destino, para establecer si el puerto es vulnerable a la invasión de algún tipo de especie procedente de Puerto Rico. Al igual que Puerto Bolívar, esta zona se considera altamente vulnerable a la introducción de bioinvasores dados los volúmenes de aguas de lastre que recibe.

![Gráfico de Santa Marta (Colombia)](image)

Figura 4.24 Volúmenes de aguas de lastre descargas en Santa Marta, según información reportada en el Formato de la Resolución A 868 (20).
En Cartagena, según información proporcionada por la División de Capitanías de Puerto de Dimar entre el 2004, 2005 y octubre de 2006, el número de buques que ingresó al puerto fue de 8573 naves aproximadamente, siendo de los tres períodos el 2005, el año de mayor cantidad de arribos. De estos buques, se trabajaron aproximadamente 1294 formatos de agua de lastre. En este puerto, a diferencia de los dos anteriores, se observa un mayor arribo de buques, pero un porcentaje mucho menor de deslastro en puerto (8.7 %), el cual fue realizado principalmente por buques del tipo tanquero.

Se evidenció en Cartagena menores volúmenes de descarga de agua de lastre, con respecto a los puertos antes analizados. Sin embargo, los muelles afectados por posibles introducciones serían aquellos donde arriban los buques tanqueros o cargueros (ubicados en el sector de Mamonal, como Néstor Pineda y Colclinker), con frecuencias, volúmenes de descarga y orígenes constantes.

Adicionalmente, los buques arribaron de 90 lugares diferentes del Caribe, Estados Unidos, Europa y el Pacífico Sur; siendo Manzanillo (Panamá), Puerto Cabello (Venezuela), Houston (USA), Rio Haina (República Dominicana) y Barranquilla (Colombia), los puertos de mayor origen. Los buques que deslazran mayores cantidades de agua en Cartagena, procedieron de Manzanillo, Puerto Cabello y Houston, y solamente algunos reportaron intercambio en mar abierto. Dichos puertos pueden ser el origen de las introducciones para Cartagena. Sin embargo, de Cartagena también se reporta toma de agua de lastre hacia Estados Unidos, Venezuela, Jamaica y Panamá.

Entre enero de 2004 y agosto de 2006 al Puerto de Turbo arribaron aproximadamente 6618 buques. Para este puerto, se reporta procedencia de los buques de 31 lugares diferentes del mundo, siendo el Caribe, Estados Unidos, Europa y el Pacífico los lugares de origen del agua deslazrada. Cabe mencionar que de éstos el 30 % no reportaron el intercambio en mar abierto, razón por la cual las posibles introducciones de organismos en Turbo provengan de estos lugares. Asimismo, de los buques que lastraron en Turbo tiene destinos a Moint (Costa Rica) (80 %), Hamburgo (Alemania) y Lisboa (Portugal) (20 %), de manera que en este caso Turbo sería fuente de contaminación por agua de lastre en estos tres lugares, de no realizar beneficios e intercambio en mar abierto.

4.4. Proyecciones

Considerando las restricciones adquiridas como país líder para la cuenca del Pacífico Sudeste, es necesario empezar a trabajar en la planeación y forma de ejecución de las actividades que conllevaran a la consolidación de las metas fijadas. Por esta razón, como producto de las valoraciones rápidas que se realicen en cada componente, jurídico, institucional y técnico, en la estrategia nacional planteadas se fijaran plazos de ejecución, valoración y seguimiento, de manera que se pueda reducir el riesgo de bioinvasiones en el territorio nacional.

Consecuentemente con lo anterior, se establecen como temas prioritarios los siguientes:

- Realizar la valoración rápida de los puertos del territorio nacional, identificando cuáles, tanto en el Caribe como en el Pacífico colombiano, son los mayores importadores de agua de lastre.

- Registrar el estado actual de levantamiento de informaciones ambientales, identificación de posibles introducciones y sus impactos.

- Compilar estadísticas de tráfico marítimo que sobre éstos se realiza. Esta información contribuye a identificar los puertos de mayor riesgo.
Proyectar listas de especies invasoras y áreas prioritarias para la investigación, de acuerdo con los estándares internacionales.

Paralelo a lo anterior, se precisa considerar las experiencias aprendidas de los puertos estudiados (Cartagena y Puerto Bolívar) en los puertos de mayor vulnerabilidad del Pacífico colombiano. Ello permite identificar alternativas de solución específicas, conforme a las disímiles condiciones geográficas y ambientales de esta región frente al Caribe colombiano.

Adicionalmente, es necesario realizar una revisión lo más completa posible de los instrumentos legales con que cuenta el país para promover el desarrollo e implementación de una norma, resolución o cualquier otro tipo de documento que permita a la autoridad correspondiente, en este caso, el Estado Rector del Puerto, exigir a los buques que arriban al territorio nacional un plan de gestión del agua de lastre, conforme lo establecen las directrices de la OMI. De igual forma, el registro donde conste dicha gestión, antes de la descarga de lastre en aguas jurisdiccionales. Con lo anterior se implementará en el territorio nacional la estrategia de la prevención, de manera que se reducirá la posibilidad de bioinvasiones.

Sumado a lo anterior, se proyecta la actualización permanente del sitio electrónico institucional. Este consignará información actualizada en términos de normatividad vigente, nacional regional o global que involucre el tema de las bioinvasiones, registro de nuevos invasores, listas actualizadas de los expertos nacionales, regionales o globales en temas técnicos, jurídicos y operativos, relacionados con el agua de lastre. De igual forma, la consolidación del reporte de agua de lastre en la aplicación ‘Lastre DB’ (numeral 4.3.3). Ello permite complementar y utilizar información como una aproximación a la evaluación de riesgo y además soporta los planes y programas de acción en los puertos de mayor vulnerabilidad.

En el mediano plazo, es importante evaluar el avance frente a la iniciativa de adoptar el instrumento internacional para la gestión del agua de lastre. Para ello se hace necesario consolidar en el país un grupo de trabajo nacional interinstitucional e interdisciplinario, que asesore al gobierno en el tema de las bioinvasiones y trabaje fuertemente en la implementación de estrategias de prevención, control y mitigación de bioinvasores identificados en el territorio nacional.

De igual forma, es necesario elaborar e implementar para cada puerto los planes de gestión de agua y sedimentos de lastre para que se facilite la toma de decisiones, asegurando además maniobras seguras y evitando la introducción o exportación de especies indeseables.

Y en el largo plazo, se proyecta tener implementados planes y programas de acción definidos por parte del Estado Rector del Puerto. Ello contribuye a controlar la introducción de nuevos invasores mediante acciones como publicidad de las normas, las áreas definidas de intercambio de aguas de lastre hasta que la norma lo permita, protocolos claros para realizar las inspecciones y sistemas de intercambio de información accesibles en todos los niveles que faciliten respuesta rápidas frente a una nueva detección.

Atendiendo las sugerencias planteadas en el Proyecto A...
Dossier para el control y la gestión del agua de lastre y sedimentos de los buques en Colombia

...tructura con que cuenta la nación para establecer el nivel de compromiso y hasta donde es viable llegar en las actividades consideradas por el proyecto regional y global. Del mismo modo, se considera importante generar planes de capacitación que faciliten la formación de recurso humano especializado en el área técnica, jurídica e internacional, para facilitar el desarrollo de las actividades planteadas.

• Generar, en el corto plazo, una valoración rápida de las capacidades jurídicas, políticas e institucionales, que den la pauta para considerar ratificar el convenio adoptado por OMI en febrero de 2004, de manera que se cuente con las herramientas y soporte jurídico necesario para que en el país el Estado Rector del Puerto pueda exigir alternativas de gestión a bordo de las naves antes de las descarga de aguas en áreas jurisdiccionales.

• Establecer alianzas estratégicas para la consecución de recursos que garanticen la sostenibilidad financiera de las metas planteadas, de manera que al año 2012 se pueda entregar satisfactoriamente el consolidado de los resultados.

• Promover el desarrollo de metodologías estandarizadas en la formulación e implementación de planes y programas de acción y gestión de agua de lastre y de los puertos, de manera que la transferencia de información, nacional, regional y global pueda ser comparable y accesible. Facilitar la replicación de experiencias aprendidas en otras áreas y generar respuestas rápidas frente a detecciones tempranas de nuevos invasores.

• Establecer cronogramas de actividades que permitan valorar el avance, hacer seguimiento y reorientar acciones o las actividades planteadas en la estrategia nacional cuando sea necesario, de manera que se consoliden planes y programas de acción específicos para los puertos de mayor vulnerabilidad frente a especies identificadas como invasoras, y se implemente también planes de gestión para el puerto en su totalidad.
BIBLIOGRAFÍA

Carlton, J. 1999b. The scale and ecological consequences of biological invasions in the world’s oceans. En: Sandlund

Decreto 1594. Por el cual se reglamenta el Título I de la Ley 9 de 1979 relacionado con los usos del agua y residuos líquidos, 26 de junio de 1984.

GEF, Pnud, OMI. 2007. Building partnerships to assist developing countries to reduce the transfer of harmful aquatic organisms in ship’s ballast water (GloBallast Partnerships), 152 pp.

Mepc 54/23. Informe del Comité de Protección del Medio Marino de la Organización Maritima Internacional, 30 de julio de 2005.

ANEXOS
Anexo I

<table>
<thead>
<tr>
<th>Especies</th>
<th>Proyecto Agua de Lastre 2002-2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chroococcus sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Anabaena sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Calothrix sp.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Oscillatoria lacustris.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Calothrix sp1.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Asterionellopsis glacialis.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Biddulphia pulchella.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Eucampia zoodiacus.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Bacteriastrum hyalinum.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Chaetoceros danicus.</td>
<td>Tigreros et al., 2005.</td>
</tr>
<tr>
<td>Chaetoceros decipiens.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Chaetoceros eibeni.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Chaetoceros glandazi.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Chaetoceros gracilis.</td>
<td>Tigreros et al., 2003; Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Chaetoceros lavéis.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Chaetoceros messanensis.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Chaetoceros rostratus.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Chaetoceros tetrastichon.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Chaetoceros tortissimus.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Chaetoceros borealis.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Chaetoceros affinis.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Especies</td>
<td>Proyecto Agua de Lastre 2002-2006</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Coscinodiscus arques.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Coscinodiscus granii.</td>
<td>Tigreros et al., (2002, 2003);</td>
</tr>
<tr>
<td>Coscinodiscus kurzii.</td>
<td>Gavilán et al., 2005; Suárez et al., 2007.</td>
</tr>
<tr>
<td>Coscinodiscus wailesii.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Campylodiscus symbeliformis.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Odontella aurita.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Odontella sinensis.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Odontella alternas.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Actinophtyus splendes.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Actinocyclus kutzingii.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Actinocyclus senarius.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Dityium brightwelli.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Melosira granulata.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Melosira nummuloides.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Calyptraera robusta.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Guinardia cylindrus.</td>
<td>Gavilán et al., 2005; Suárez et al., 2007.</td>
</tr>
<tr>
<td>Rhizosolenia sp.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Rhizosolenia imbricata.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Streptateca sp.</td>
<td>Suárez et al., 2007; Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Rhizosolenia bergonii.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Cyclotella meneghianiana.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Cyclotella striata.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Thalassiosira gravida.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Lauderia anulata.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Asterionellopsis glaciales.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Plagiogramma sp.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Synedra ulna.</td>
<td>Tigreros et al., 2003; Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Thalassionema fraudelii.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Thalassiotrix heteromorpha var. Mediterránea.</td>
<td>Tigreros et al., 2003, Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Eunotia sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Fragilariaopsis doliolus.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Plagiotropis lepidóptera.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Nitzschia palea.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Nitzschia seriata complex.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Pseudos-nitzschia sp.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Dictyochoa polyaeitis.</td>
<td>Tigreros et al., 2002.</td>
</tr>
<tr>
<td>Dictyochoa speculum.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Dyctyocha sp.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Dinophysis rotundata.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Especies</td>
<td>Proyecto Agua de Lastre 2002-2006</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Hermesinum adriaticum.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Ceratium pulchellum.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Ceratium pentagonum.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Ceratium vulture.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Ceratium gibberum.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Ceratium symetricum.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Cladophysis brachiolatum.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Gymnaculax monacantha.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Heterodinium mediterraneum.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Oxytoxum milneri.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Protoperidinium oblongum.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Protoperidinium latidorsale.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Podolampas spinifer.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Quiste de dinoflagelado.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Trachelomonas sp.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Euglena sp.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Phacues sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Sphaerocystis sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Tetraspora sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Tetraedron sp.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Pediastrum dúplex.</td>
<td>Tigreros et al., 2002;</td>
</tr>
<tr>
<td>Pediastrum simples.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Pediastrum tetras.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Pediastrum sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Pediastrum boryanum.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Pediastrum gracile.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Scenedesmus bicaudatus.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Scenedesmus quadricula.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Scenedesmus sp.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Ankistrodesmus spiralis.</td>
<td>Tigreros et al., 2003;</td>
</tr>
<tr>
<td>Dictyosphaeriium sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Closterium sp.</td>
<td>Gavilán et al., 2005.</td>
</tr>
<tr>
<td>Cosmarium sp.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Hyalotheca sp.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Staurastrum sp.</td>
<td>Tigreros et al., 2003.</td>
</tr>
<tr>
<td>Staurastrum gracile.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Staurastrum leptochladum.</td>
<td>Suárez et al., 2007.</td>
</tr>
<tr>
<td>Micrasterias sp.</td>
<td>Suárez et al., 2007.</td>
</tr>
</tbody>
</table>
Anexo II

Tabla I. Listado de taxas zooplanctónicas reportadas para la Bahía de Cartagena.
<table>
<thead>
<tr>
<th>Organismos</th>
<th>Referente bibliográfico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acartia tonsa.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Apocyclops sp.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Balanus amphitrite.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Balanus eburneus.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Bardia sp.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Calanus sp.</td>
<td>Samper, 1970 (Ujtl).</td>
</tr>
<tr>
<td>Centropages violaceus.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Corophium sp.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Creseis sp.</td>
<td>Samper, 1970 (Ujtl).</td>
</tr>
<tr>
<td>Cytherella sp.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Cytherelloidea sp.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Diacria sp.</td>
<td>Samper, 1970 (Ujtl).</td>
</tr>
<tr>
<td>Ditrichocorycaeus andrewsi.</td>
<td>Fitzgerald y Conde; 1995 (Cioh).</td>
</tr>
<tr>
<td>Euchaeta sp.</td>
<td>Samper, 1970 (Ujtl).</td>
</tr>
<tr>
<td>Euterpina acutifrons.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Harpacticus sp.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Hemicirclops sp.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Labidocera sp.</td>
<td>Samper, 1970 (Ujtl).</td>
</tr>
<tr>
<td>Oithona fonsecae.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Oithona nana.</td>
<td>Fitzgerald y Conde, 1995 (Cioh); Cañón 2007.</td>
</tr>
<tr>
<td>Oithona plumifera.</td>
<td>Fitzgerald y Conde, 1995 (Cioh); Cañón 2007.</td>
</tr>
<tr>
<td>Oncaeas sp.</td>
<td>Fitzgerald y Conde, 1995 (Cioh); Giraldo y Herrera, 1982 (Ujtl); Vanegas, 2005.</td>
</tr>
<tr>
<td>Oncaea media.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Paracalanus parvus.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Paracytheridea sp.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Parvocalanus crassoristris.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Perissocytheridea sp.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Holocyclus sp.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Lucifer faxioni.</td>
<td>Fitzgerald y Conde, 1995 (Cioh); Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Naupliu Cirripedio.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Cypris Cirripedio.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Evadne sp.</td>
<td>Fitzgerald y Conde, 1995 (Cioh); Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Penilia sp.</td>
<td>Fitzgerald y Conde, 1995 (Cioh); Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Penilia oviscris.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Favella sp.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Amphorellopsis sp.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Organismos</td>
<td>Referente bibliográfico</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Amphorelopsis acuta.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Amphorides brandti.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Codonellopsis americana.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Coxiella bolivari.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Craterella obscura.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Eutintinnus stramentus.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Favella campanula.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Favella panamensis.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Heliscotomella sp.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Leprotintinnus nordagvisti</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Metacyclus sp.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Metacyclus mereschkoskowii</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Metacyclus tropica.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Parundella praetenuis.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Rhabdonella va.lifornica.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Stenosemella nivalis.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Streemstruipella immunesis.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis sp.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis aperta.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis beroidea.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis capitonis.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis compressa.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis cylindrica.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis daday.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis directa.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis glans.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis nana.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis orientalis.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis radix.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis rotundata.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis tubulosa.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Undella sp.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Undella subcaudata.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Tintinnopsis toconnectensis.</td>
<td>García 1987 (Ujtl).</td>
</tr>
<tr>
<td>Organismos</td>
<td>Referente bibliográfico</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Aequorea sp.</td>
<td>Flórez, 1981 (Ujl.)</td>
</tr>
<tr>
<td>Aglantha elata.</td>
<td>Flórez, 1981 (Ujl.)</td>
</tr>
<tr>
<td>Aglaophenia apocarpa.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Aglaophenia latecarinata.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Aglaophenia rhynchocarpa.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Antennella secundaria.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Apolemia uvaria.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Aurelia aurita.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Bassia basensis.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Beroe cucumis.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Chelophyes appendiculata.</td>
<td>Moncaiano y Niño, 1976 (Ujl.)</td>
</tr>
<tr>
<td>Chrysaora quinquecirrh.</td>
<td>Giraldo y Herrera, 1982 (Ujl);</td>
</tr>
<tr>
<td></td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Chrysaora sp.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Clytia cylindrica.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Clytia graviieri.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Clytia noliformis.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Cnidocystus marginatus.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Corydendrium parasiticum.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Craspedacusta sowerbyi.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Cuspidella humilis.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Diphysa bojani.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Drymonema victoria.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Dynamena carnicina.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Dynamena cristoides.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Dynamena quadridentata.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Dynamena sp.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Ectopleura dumotieri.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Eudendrium ramosum.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Eudendrium capillare.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Eutima gentiana.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Eutima mira.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Garcia humilis.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Haclecum beanii.</td>
<td>Moncaiano y Niño, 1976 (Ujl)</td>
</tr>
<tr>
<td>Haclecum haleicum.</td>
<td>Fitzgerald y Conde, 1995 (Cioh)</td>
</tr>
<tr>
<td>Halocordyle disticha.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Halopteris carinata.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Halopteris diaphana diaphana.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Hebeba parasitica.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Synthecium tubithecum.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Tetraplatia volitans.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Thyroscyphus rosomus.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Tubularia parasitica.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Turritopsis nutricula.</td>
<td>Flórez, 1981 (Ujl)</td>
</tr>
<tr>
<td>Organismos</td>
<td>Referente bibliográfico</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Nemátoda.</td>
<td>Fitzgerald y Conde, 1995 (Cioh);</td>
</tr>
<tr>
<td>Aegina grimaldii.</td>
<td>Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Aequarea sp.</td>
<td>Flórez, 1981 (Ujtl).</td>
</tr>
<tr>
<td>Chrysaora quinquecirrh.</td>
<td>Giraldo y Herrera, 1982 (Ujtl);</td>
</tr>
<tr>
<td>Chrysaora sp.</td>
<td>Moncaleano y Niño, 1976 (Ujtl).</td>
</tr>
<tr>
<td>Dynamena sp.</td>
<td>Moncaleano y Niño, 1976 (Ujtl).</td>
</tr>
<tr>
<td>Haleciun haleciun.</td>
<td>Fitzgerald y Conde, 1995 (Cioh).</td>
</tr>
<tr>
<td>Organismos</td>
<td>Referente bibliográfico</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Thyroscyphus romasus.</td>
<td>Flórez, 1981 (Ujtl).</td>
</tr>
<tr>
<td>Tubularia parasitica.</td>
<td>Flórez, 1981 (Ujtl).</td>
</tr>
<tr>
<td>Turritopsis nutricula.</td>
<td>Flórez, 1981 (Ujtl).</td>
</tr>
<tr>
<td>Nematoda.</td>
<td>Fitzgerald y Conde, 1995 (Cioh); Giraldo y Herrera, 1982 (Ujtl).</td>
</tr>
<tr>
<td>Chloroscombrus sp.</td>
<td>Castillo, 1993 (Ujtl).</td>
</tr>
<tr>
<td>Hippocampus sp.</td>
<td>Castillo, 1993 (Ujtl).</td>
</tr>
<tr>
<td>Oligopiltes sp.</td>
<td>Castillo, 1993 (Ujtl).</td>
</tr>
<tr>
<td>Mugil sp.</td>
<td>Castillo, 1993 (Ujtl).</td>
</tr>
<tr>
<td>Eugeres sp.</td>
<td>Castillo, 1993 (Ujtl).</td>
</tr>
<tr>
<td>Haemulon sp.</td>
<td>Castillo, 1993 (Ujtl).</td>
</tr>
</tbody>
</table>
Anexo III

Tabla I. Taxas zooplanctónica y especies fitoplanctónicas identificadas en Puerto Bolívar y Bahía Portete.
Tabla I. Taxas zooplanctónica y especies fitoplanctónicas identificadas en Puerto Bolívar y Bahía Portete.

<table>
<thead>
<tr>
<th>Especie/familia</th>
<th>Referente bibliográfico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acartiopsis sp. (Sars 1900).</td>
<td>Integral, 1982; Ciales et al., 2006; Cioh, 2007.</td>
</tr>
<tr>
<td>Eucalanus sp. (Giesbrecht, 1892).</td>
<td>Invemar, 1988; Cioh, 2007.</td>
</tr>
<tr>
<td>Lucifer sp. 1.</td>
<td>Integral, 1982; Cioh, 2007.</td>
</tr>
<tr>
<td>Conchoecia sp. (Dana, 1894).</td>
<td>Invemar, 1988; Cioh, 2007.</td>
</tr>
<tr>
<td>Especie/familia</td>
<td>Referente bibliográfico</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>(Boalch, 1977).</td>
<td></td>
</tr>
<tr>
<td>(Greville, 1865).</td>
<td></td>
</tr>
</tbody>
</table>
Anexo IV

Tabla I
Abundancia de taxas zooplanctónicas (Ind/40L) presentes en tanques de lastres de buques que arribaron a Puerto Bolívar durante el estudio Agua de Lastre en 2007-2008.

Tabla II
Abundancia de especies fitoplanctónicas (Ind/40L) presentes en tanques de lastres de buques que arribaron a Puerto Bolívar durante el estudio Agua de Lastre en 2007-2008.
Tabla I. Abundancia de taxas zooplanctónicas (Ind/40L) presentes en tanques de lastres de buques que arribaron a Puerto Bolívar durante el estudio Agua de Lastre en 2007-2008.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Especie/Familia</th>
<th>Estadio</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copepodos</td>
<td>Acartia sp. (Sars 1900).</td>
<td></td>
<td>40</td>
<td>5</td>
<td>6</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calocalanus sp. (Bjornberg, 1972).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Centropages sp. (Giesbrecht, 1892).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copilia sp. (Exner, 1891).</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corycaeus sp. (Dana, 1849).</td>
<td></td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eutherpina acutifrons. (Dana, 1852).</td>
<td></td>
<td>3</td>
<td>30</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oithona sp. (Dana. 1853).</td>
<td></td>
<td>1</td>
<td>9</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paracalanus sp. (Giesbrecht, 1892).</td>
<td></td>
<td>6</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temora stylifera. (Sars, 1903).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudocalanus sp. (Sars, 1900).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudodiaptomus sp. (Dahl, 1894).</td>
<td></td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No determinada.</td>
<td></td>
</tr>
<tr>
<td>Decapodos</td>
<td>Cypris.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nauplio Copépodo 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthidae (Milne Edwards).</td>
<td></td>
</tr>
<tr>
<td>Porcellanidae.</td>
<td></td>
</tr>
<tr>
<td>Brachyuran.</td>
<td></td>
</tr>
<tr>
<td>Cladoceros</td>
<td>Pseudoeodond tergestina. (Loven, 1835).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penilia avirostris. (Dana, 1849).</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quetognatos</td>
<td>Parasagitta bipunctata. (Leuckart, 1894).</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spionidae. (Grube, 1850).</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morf. de Medusa 3.</td>
<td></td>
</tr>
<tr>
<td>Moluscos</td>
<td>Mytilus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morf. de Gasteropodo.</td>
<td></td>
</tr>
<tr>
<td>Urocordados</td>
<td>Oikopleura sp.</td>
<td></td>
</tr>
<tr>
<td>Ichtioplanton</td>
<td>Eugralido.</td>
<td></td>
</tr>
</tbody>
</table>

Anexo IV
<table>
<thead>
<tr>
<th></th>
<th>Taxa</th>
<th></th>
<th>No determinada.</th>
<th>Nauplio Copépodo 1</th>
</tr>
</thead>
</table>
| Copépodos | Acartia sp. (Sars 1900).
Calocalanus sp. (Bjornberg, 1972).
Centropages sp. (Giesbrecht, 1892).
Copilia sp. (Exner, 1891).
Corycaeus sp. (Dana, 1849).
Eutherpinia acutifrons. (Dana, 1852).
Oithona sp. (Dana. 1853).
Paracalanus sp. (Giesbrecht, 1892).
Temora stylifera. (Sars, 1903).
Pseudocalanus sp. (Sars, 1900).
Pseudodiaptomus sp. (Dahl, 1894). | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| | No determinada. | | | | 17 | 1 | 2 | | | | |
| Decápodos | Cypris.
Xanthidae. (Milne Edwards).
Porcellanidae.
Brachyuran. | | Larva
Megalopa
Zoea
Zoea | | 1 | | 2 | 1 | | | 1 |
| Cladóceros | Pseudoeuvadne tergestina. (Loven, 1835).
Penilia avirostris. (Dana, 1849). | | | | 3 | 482 | 7 |
| Quetognatos | Parasagitta bipunctata. (Leuckart, 1894). | | | | | | 12 | 1 |
| Moluscos | Spionidae. (Grube, 1850).
Morf. de Medusa 3.
Mytilus sp.
Morf. de Gasteropodo. | | | | | | | 32 | 70 | 2 |
<p>| Urocordados | Oikopleura sp. | | | | | 17 | 2 |
| Ictioplancton | Eugralido. | | | | | | Larva | 2 |</p>
<table>
<thead>
<tr>
<th>Especies</th>
<th>Tanques de lastre de buques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceratium hiricus</td>
<td>1</td>
</tr>
<tr>
<td>Ceratium pentagonum</td>
<td>2</td>
</tr>
<tr>
<td>Ceratium sp. (Shrank, 1793)</td>
<td>1</td>
</tr>
<tr>
<td>Protoperidinium sp.</td>
<td>1</td>
</tr>
<tr>
<td>Protoperidinium denticulatum</td>
<td>2</td>
</tr>
<tr>
<td>Dimophysis caudatae</td>
<td>3</td>
</tr>
<tr>
<td>Procentrum gracile (Shutt)</td>
<td>55</td>
</tr>
<tr>
<td>Chaetoceros</td>
<td>10</td>
</tr>
<tr>
<td>Cosinodiscus sp. (Ehrenberg)</td>
<td>16</td>
</tr>
<tr>
<td>Cosinodiscus gigas</td>
<td>9</td>
</tr>
<tr>
<td>Nitzenchia sp. (Hassall, 1845)</td>
<td>4</td>
</tr>
<tr>
<td>Pleurosigma sp. (Treviranus, sp. 1848)</td>
<td>2</td>
</tr>
<tr>
<td>Rhizosolenia irminicata (Van Heurck, 1896)</td>
<td>1</td>
</tr>
<tr>
<td>Thalassionema sp. (Heiden)</td>
<td>2</td>
</tr>
</tbody>
</table>
Agradecimientos

La autora expresa agradecimientos por sus aportes al desarrollo de esta publicación a las capitánías de puertos de Cartagena y Puerto Bolívar, agencias marítimas, armadores, El Cerrejón, gerentes de sociedades portuarias, capitanes de buques y evaluadores de los artículos publicados durante la ejecución del Proyecto Agua de Lastre.